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Abstract

Influence diagnostics such as influence functions and approximate maximum influence perturbations
are popular in machine learning and in AI domain applications. Influence diagnostics are powerful
statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample
statistical bounds, as well as computational complexity bounds, for influence functions and approximate
maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We
illustrate our results with generalized linear models and large attention based models on synthetic and
real data.

1 INTRODUCTION
Statistical machine learning models have been increasingly used in fully or partially automatized data analysis
processes and artificial intelligence applications (Rudin, 2019). The automatizing of decisions impacting the
society inspire a parallel effort to develop methods to identify the factors impacting specific decisions. The
heightened scrutiny on the way statistical models now operate at a large scale and at a fast pace has led to a
renewed interest in statistical diagnostics such as the influence function (Cook and Weisberg, 1982; Koh and
Liang, 2017; Schioppa et al., 2022; Louvet et al., 2022).

The influence function or curve of a statistical estimator has been proposed to measure the sensitivity
of the estimator to individual datapoints. Computing the influence of a particular datapoint boils down to
computing an inverse-Hessian-vector product. Due to a greater focus on least-squares-type estimator with
small samples, the computational aspects have received relatively little attention until recently (Koh and
Liang, 2017; Schioppa et al., 2022), while the statistical aspects have mainly focused on large sample classical
asymptotics (Rousseeuw et al., 2011; Avella-Medina, 2017).

The statistical analysis of influence functions for generalized additive models presents several challenges.
For non-squared loss functions, the curvature captured by the Hessian varies away from the true parameter θ?,
a property that can be modelled using self-concordance. Moreover, non-asymptotic analyses for misspecified
generalized additive models require recently developed tools such as matrix concentration inequalities (Mackey
et al., 2014). We present non-asymptotic statistical bounds for influence functions of generalized additive
models under pseudo self-concordance assumptions. Thanks to a novel interpretation of Broderick et al.
(2020)’s maximum subset influence using superquantiles, we also obtain non-asymptotic guarantees for this
diagnostic tool.

The computational analysis of influence is equally interesting. The statistical and computational trade-offs
have not received attention to the best of our knowledge. We review classical algorithms such as the conjugate
gradient method (Saad, 2003; Bai and Pan, 2021) and an approach using the Arnoldi iteration (Schioppa
et al., 2022), and we develop approaches using variance reduced stochastic optimization algorithms (Bertsekas,
2015; Bach, 2021). Our analysis reveals interesting trade-offs depending on the near low-rank structure that
is the eigendecay of the Hessian for small to moderate sample sizes relative to the dimension, as well as the
potential benefits of using linearly convergent stochastic algorithms.

†Now at Google Research
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Outline. In Section 2, we introduce influence diagnostics and the computational challenges they present in
high dimensional settings. In Section 3, we obtain finite-sample bounds on empirical influence functions for
generalized linear models. We also achieve computational accuracy bounds on empirical influence functions
computed using deterministic Krylov-based methods and stochastic optimization based methods. In Section
4, we provide similar guarantees for maximum subset influence owing to a novel superquantile interpretation.
Lastly, in Section 5, we provide numerical illustrations of our theoretical bounds on synthetic data and real
data, with generalized linear models and large attention based models.

2 INFLUENCE FUNCTIONS
We are interested in the parameter θ? ∈ Θ = Rp defined as

θ? := arg min
θ∈Θ

[
F (θ) := EZ∼P [`(Z, θ)]

]
, (1)

where P is an unknown probability distribution over a data space Z and ` : Z ×Θ→ R+ is a loss function
that is closed, convex, and thrice continuously differentiable in the second argument. We assume this argmin
is unique.

For instance, binary logistic regression corresponds to Z = Rp × {±1} and a loss `
(
(x, y), θ

)
= log

(
1 +

exp(−y〈θ, x〉)
)
. Here, problem (1) is equivalent to finding parameters θ? ∈ Θ that minimize the Kullback-

Leiblier divergence between the unknown data distribution P and the parametric model Pθ(Y |X = x) =
1/
(
1 + exp(−y〈θ, x〉)

)
.

Since the data distribution P is unknown, we estimate θ? using an i.i.d. sample Z1:n := (Z1, · · · , Zn) ∼ Pn.
This leads to the M-estimation problem

θn := arg min
θ∈Θ

1

n

n∑
i=1

`(Zi, θ) , (2)

where we assume the argmin to be unique. For the logistic regression example, this coincides with the
maximum likelihood estimator of θ?.

Influence functions. We quantify the influence of a fixed data point z on the estimator θn using the
perturbation

θn,ε,z := arg min
θ∈Θ

{
1− ε
n

n∑
i=1

`(Zi, θ) + ε `(z, θ)

}

for some ε > 0. The difference (θn,ε,z − θn)/ε is a measure of the local effect that the datapoint z has on the
estimator θn, as illustrated in Figure 1. Influence functions provide a way to avoid recomputing this estimator
for each z ∈ Z of interest with a linear approximation of the map ε 7→ θn,ε,z (Hampel, 1974). Concretely, we
approximate

θn,ε,z − θn
ε

≈ dθn,ε,z
dε

∣∣∣
ε=0

=: In(z) . (3)

This quantity is well-defined when the Hessian Hn(θ) := (1/n)
∑n
i=1∇2`(Zi, θ) is invertible at θ = θn.

This idea of taking infinitesimal perturbations to approximate the effect of modifying data in statistics
dates back to the infinitesimal jackknife (Jaeckel, 1972). A celebrated result of Cook and Weisberg (1982),
obtained from invoking the implicit function theorem to differentiate through the first order optimality
conditions of θn, gives the closed form expression

In(z) = −Hn(θn)−1∇`(z, θn) . (4)

Since In(z) does not depend on θn,ε,z, there is no need to re-solve the M-estimation problem for each z.
Instead, we solve a linear system involving Hn(θn); we return to the computational aspects later.
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In this work, we are interested in the non-asymptotic statistical behavior of the influence function In(z).
To define the population limit, we denote the perturbed population minimizer with an ε-fraction of the mass
moved to z as

θ?,ε,z := arg min
θ∈Θ

{
EZ∼(1−ε)P+εδz [`(Z, θ)]

}
,

where δz denotes the point mass at z. The population influence function is defined similar to (3) as the
derivative

I(z) :=
dθ?,ε,z

dε

∣∣∣
ε=0

= lim
ε→0

θ?,ε,z − θ?
ε

. (5)

If the Hessian H? = ∇2F (θ?) of the population objective (1) is strictly positive definite at θ?, we get a closed
form expression similar to (4) due to Cook and Weisberg (1982):

I(z) = −H−1
? ∇`(z, θ?) . (6)

As n → ∞, uniform convergence arguments would give θn → θ? in probability under appropriate
assumptions. From the continuous mapping theorem, we would expect that the sample influence function
In(z) = −Hn(θn)−1∇`(z, θn) converges to the population influence I(z) = −H−1

? ∇`(z, θ?). We establish
finite-sample bounds in Section 3 to formalize this convergence.

Most influential subset. Similar to measuring the influence of a fixed point z, we also consider the
influence of subsets of the sample Z1:n. Given a scalar α ∈ (0, 1), the most influential subset method of
Broderick et al. (2020) aims to find the subset of the data of size at most αn that, when removed, leads to
the largest increase of a continuously differentiable test function h : Rp → R. A typical example of h is the
loss h(θ) = `(ztest, θ) of a fixed test point ztest.

This approach relies on perturbing the weights of a weighted M-estimation problem around the nom-
inal weights (Giordano et al., 2019). Given weights w in the probability simplex ∆n−1, define θn,w :=
arg minθ∈Θ

∑n
i=1 wi`(Zi, θ), so that θn = θn,1n/n. Finding the maximum influence of any subset of data of

size at most αn for a test function h amounts to solving maxw∈Wα h
(
θn,w

)
where

Wα :=

{
w ∈ ∆n−1 :

at most αn elements of w
are zero and the rest are
equal

}
.

The most influential subset corresponds to the zero entries of the maximizing w. Unfortunately, this expression
cannot be computed tractably as |Wα| grows exponential in n. Instead, Broderick et al. (2020) use a linear
approximation

h(θn,w) ≈ h(θn) +

〈
w − 1n

n
,∇wh(θn,w)

∣∣∣
w=1n/n

〉
.

Finding the most influential subset according to this linear approximation leads to the maximum subset
influence

Iα,n(h) := max
w∈Wα

〈
w,∇wh(θn,w)

∣∣∣
w=1n/n

〉
. (7)

Similar to (4), the implicit function theorem together with the chain rule gives the closed form

Iα,n(h) = max
w∈Wα

n∑
i=1

wivi, where

vi = −
〈
∇h(θn), Hn(θn)−1∇`(Zi, θn)

〉
.

(8)

While the maximization over Wα is an instance of the NP-hard knapsack problem, its solution coincides with
that of its continuous relaxation over convWα when αn is an integer and the vi’s are unique. This continuous
knapsack problem is solved by a greedy algorithm that zeros out the smallest αn entries of vi’s (Dantzig,
1957).
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Figure 1: Illustration of the
influence of a point z on
the model parameters. The
base model (gray) line is
drastically affected when
the blue point is included
(blue dotted line) but less
affected when the orange
point is included (orange
dotted line).

In this work, we also study the nonasymptotic statistical behavior of the subset influence Iα,n. The
population limit in this case is more subtle than for In of (4). Using similar arguments, we would expect the
vector v to be related to the random variable φ(Z) where φ : Z → R maps z 7→ −〈∇h(θ?), H

−1
? ∇`(z, θ?)〉,

but the maximum over Wα is tricky. In Section 5.2, we rigorously define this population limit and establish
convergence guarantees.

Computational aspects. While linearization methods based on the infinitesimal jackknife avoid recomput-
ing the M-estimator for each z, a naïve implementation of In(z) (and similarly, Iα,n) requires materializing
and inverting the Hessian matrix Hn(θn) ∈ Rp×p in O(np2 + p3) time with O(p2) storage. This approach
does not scale to modern applications in deep learning with dense Hessians and large n, p. Instead, we rely
on iterative algorithms to approximately minimize the convex quadratic

gn(u) :=
1

2
〈u,Hn(θn)u〉+ 〈∇`(z, θn), u〉 . (9)

Indeed, the unique minimizer u? of gn satisfies 0 = ∇gn(u?) = Hn(θn)u? +∇`(z, θn) so that u? = In(z) in (4)
as desired. Modern automatic differentiation software supports the efficient computation of the Hessian-vector
product u 7→ ∇2`(z, θ)u without materializing the Hessian. We review some iterative algorithms that can
achieve this.

The conjugate gradient method is a classical algorithm to solve linear systems defined by a positive definite
matrix. It converges linearly, but each iteration requires a full batch Hessian-vector product u 7→ Hn(θn)u.
We postpone precise rates to Section 3.

Alternatively, one might optimize the quadratic gn(u) with stochastic gradient descent (SGD). Here, each
iteration requires a Hessian-vector product at only one sample Zi, but the convergence rate is sublinear. We
can get a linear rate at the same O(1) per-iteration complexity through the use of variance reduction with the
stochastic variance reduced gradient (SVRG; Johnson and Zhang, 2013) or its accelerated counterpart (Lin
et al., 2018).

The LiSSA algorithm (Agarwal et al., 2017) solves this linear system by approximating the matrix inverse
with its Neumann series M−1 =

∑∞
k=0(I−M)k for positive definite M with ‖M‖2 < 1. By using an unbiased

stochastic estimator ∇2`(ZI , θn) to M = Hn(θn), where I is a random index, this reduces exactly to the
SGD baseline. See Appendix B for details.

Schioppa et al. (2022) propose to solve the linear system with a low-rank approximation of the Hessian. Con-
cretely, letHn(θn) = QΛQ> denote its eigenvalue decomposition with Λ = Diag(λ1, · · · , λd) arranged in nonin-
creasing order. The rank-k approximation of v = Hn(θn)−1u is given by vk = QDiag(λ−1

1 , · · · , λ−1
k , 0 · · · , 0)Q>u.

The k-largest eigenvalues and their eigenvectors are approximated using the Lanczos/Arnoldi iterations (Lanc-
zos, 1950; Arnoldi, 1951). This algorithm requires computations of a full batch Hessian-vector product.

For a full error characterization of the influence estimate În(z) returned by an iterative algorithm, we
must take into account both the statistical error In(z)− I(z) and the computational error În(z)− In(z).

3 ERROR ANALYSIS OF INFLUENCE ESTIMATION
We start by establishing a bound on the statistical error of the influence In(z) = −Hn(θn)−1∇`(z, θn) of a
data point z to the population limit I(z) = −H(θ?)

−1∇`(z, θ∗).
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We give an error bound ‖In(z)− I(z)‖H? in the natural geometry implied by the population Hessian
H? := H(θ?) at the true parameter θ?; here we use the notation ‖u‖2A = 〈u,Au〉 for a positive definite
matrix A. The H?-norm captures the behavior of I(z) and In(z) in an affine-invariant manner. That
is, if we parameterize the problem in terms of θ′ = Aθ for an invertible matrix A so that the loss is
`′(z, θ′) = `(z,A−1θ′), the influence functions I ′ in this new parameterization satisfies I ′(z) = AI(z) and
similarly for its sample version. Letting H ′? := EZ∼P [∇2`′(z, θ′?)] be the (reparameterized) Hessian at the
minimizer θ′? = Aθ?, we can verify that ‖I ′n(z)− I ′(z)‖H′? = ‖In(z)− I(z)‖H? , i.e., the error criterion is
affine-invariant.

3.1 Statistical Error Bound
Our statistical error bound depends on a notion of effective dimension of the statistical model. Define the
covariance matrix of the gradient as

G(θ) = CovZ∼P
(
∇`(Z, θ)

)
, (10)

where Cov(ξ) = E[ξξ>]− E[ξ]E[ξ]> is the covariance matrix of a random vector ξ. We define the effective
dimension of this problem as

p? = Tr
[
H
−1/2
? G?H

−1/2
?

]
, (11)

where G? := G(θ?) is the gradient covariance at θ?.
The covariance G? has a special meaning for maximum likelihood estimation. Concretely, if the loss

`(z, θ) = − logPθ(z) is the negative log likelihood and the statistical model Pθ? is well-specified, then G? is
the information matrix at θ?. In this case, we have G? = H? so that the effective dimension p? equals the
ambient dimension p.

For misspecified models or for general M-estimation problems beyond maximum likelihood, G? and H? are
distinct. The effective dimension p? captures the mismatch between the two; it can be much smaller or much
larger than p. We can have p? � p when the eigenvalues of G? decay faster than those of H?. Conversely,
we get that p? > p when the eigenvalues of G? decay slower than those of H?. We refer to Appendix C for
precise calculations. Note that regardless of whether p? > p or p? < p, a dependence on p? is unavoidable.
Precisely, p?/n is a lower bound on the estimation error (Fortunati et al., 2016).

Assumptions. We make the following assumptions.
(a) For any z ∈ Z, the loss function `(z, ·) is pseudo self-concordant for some R > 0:

|D3
θ`(z, θ)[u, u, v]| ≤ R‖u‖2∇2`(z,θ) ‖v‖2 ,

where D3
xf(x)[u, u, v] := d

dt 〈u,∇2f(x+ tv)u〉|t=0 for f thrice continuously differentiable and where ‖·‖2
denotes the spectral norm for matrices.

(b) There exists a constant K1 > 0 such that the normalized gradient H(θ?)
−1/2∇`(Z, θ?) at θ? is sub-

Gaussian with parameter K1.
(c) There exists K2 > 0 such that the standardized Hessian H(θ?)

−1/2∇2`(Z, θ?)H(θ?)
−1/2 − Ip at θ?

satisfies a Bernstein condition with parameter K2 (definition in Appendix 27). Moreover,

σ2
H :=

∥∥∥V(H(θ?)
−1/2∇2`(Z, θ?)H(θ?)

−1/2
)∥∥∥

2

is finite where we denote V(M) = E[MM>]− E[M ]E[M ]> for a random matrix M .
Self-concordance was introduced by Nesterov and Nemirovskii (1994) to give an affine-invariant analysis of

Newton’s method and was adapted by Bach (2010) to apply to logistic regression; we use the latter assumption.
This assumption prevents ∇2`(z, θ) from changing too quickly with θ. The most useful consequence of this
assumption is a spectral approximation of the Hessian (1/2)H(θ′) � H(θ) � 2H(θ′) for θ and θ′ close enough
in terms of the Euclidean distance.

We make the last two assumptions to argue about the concentration of∇`(Z, θ?) and∇2`(Z, θ?) respectively
to their expected values for Z ∼ P . We make appropriate normalizations so that the assumptions are affine
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invariant, similar to the error criterion. Since E[∇`(Z, θ?)] = 0, assumption (b) gives a high-probability bound
on ‖∇`(Z, θ?)‖H−1

?
in the natural H−1

? norm of the gradient. Assumption (c) gives the spectral concentration
(1/2)H(θ) � Hn(θ) � 2H(θ) for a fixed θ with high probability for n large enough.

Examples. The assumptions outlined above hold for all generalized linear models under some regularity
conditions. We give two concrete examples here.
Least Squares: Let Z ⊂ Bp,M ×B1,M , where Bp,M := {w ∈ Rp : ‖w‖2 ≤M} for some M > 0. Consider the
loss `(z, θ) := 1

2 (y− θ>x)2 where z = (x, y) denotes an input-output pair. Assume that H(θ?) = E[XX>] � 0.
(a) Pseudo self-concordance. Since ∇2

θ`(z, θ) = xx> � 0 and ∇3
θ`(z, θ) = 0, the loss ` is pseudo self-

concordant for all R ≥ 0.
(b) Sub-Gaussian gradient. Note that ‖∇θ`(Z, θ?)‖2 = ‖XX>θ? −XY ‖2 ≤M2(‖θ?‖2 + 1) and H(θ?) =

E[XX>] � 0. This is sufficient to guarantee that the normalized gradient H(θ?)
−1/2∇`(Z, θ?) is

sub-Gaussian (cf. Lemma 33 in Appendix H).
(c) Bernstein Hessian. Note that ‖∇2

θ`(Z, θ?)‖2 = ‖XX>‖2 ≤M2, the standardized Hessian
H(θ?)

−1/2∇2
θ`(Z, θ?)H(θ?)

−1/2 − Ip satisfies the matrix Bernstein condition (cf. Lemma 36 in Ap-
pendix H).

Logistic Regression: Let Z ⊂ Bp,M×{±1} for someM > 0. Consider the loss `(z, θ) = log
(
1+exp(−y〈θ, x〉)

)
.

Assume that H(θ?) � 0.
(a) Pseudo self-concordance. Note that ∇2

θ`(z, θ) = σ(θ>x)[1 − σ(θ>x)]xx> and D3
θ`(z, θ)[u, u, v] =

σ(θ>x)[1 − σ(θ>x)][1 − 2σ(θ>x)](u>x)2(v>x). It follows that |D3
θ`(z, θ)[u, u, v]| ≤ M‖v‖2‖u‖

2
∇2`(z,θ)

and thus ` is pseudo self-concordant with R ≥M .
(b) Sub-Gaussian gradient. Note that ‖∇θ`(Z, θ?)‖2 = ‖[1− σ(Y θ>? X)]Y X‖2 ≤ M . Therefore, the

normalized gradient H(θ?)
−1/2∇`(Z, θ?) is sub-Gaussian (cf. Lemma 33 from Appendix H).

(c) Bernstein Hessian. Note that ‖∇2
θ`(Z, θ?)‖2 ≤ ‖XX>‖2/4 ≤ M2/4. It follows that the standardized

Hessian H(θ?)
−1/2∇2

θ`(Z, θ?)H(θ?)
−1/2 − Ip satisfies the matrix Bernstein condition (cf. Lemma 36

from Appendix H).

Statistical error bound. Below and throughout, we omit absolute constants.

Theorem 1. Suppose the assumptions above hold and

n ≥ CK1,K2,σH

(
R2p?
µ?

log
1

δ
+ log

p

δ

)
,

where µ? = λmin(H?) and CK1,K2,σH is a constant depending on K1,K2, σH . Then, with probability at least
1− δ, we have 1

4H? � Hn(θn) � 3H? and

‖In(z)− I(z)‖2H? ≤ CK1,K2,σH

R2p2
?

µ?n
log3

(p
δ

)
.

Theorem 1 has several merits. First, it is adapted to the eigenspectrum of G? and H? via the effective
dimension p?; the bound only has a logarithmic dependence on the ambient dimension p. The effective
dimension p? is also affine-invariant, similar to the error criterion. The only geometry-dependent (i.e., not
affine-invariant) term in Theorem 1 is the minimial eigenvalue µ? of the Hessian H?. Third, we get a fast 1/n
rate, faster than the 1/

√
n rate typical of uniform convergence arguments.

We now sketch the key aspects of its proof. The full proof is given in Appendix D.

Proof Sketch of Theorem 1. We use the triangle inequality to bound ‖In(z)− I(z)‖H? by∥∥(Hn(θn)−1 −H−1
?

)(
∇`(z, θn)−∇`(z, θ?)

)∥∥
H?

+
∥∥(Hn(θn)−1 −H−1

?

)
∇`(z, θ?)

∥∥
H?

+
∥∥H−1

?

(
∇`(z, θn)−∇`(z, θ?)

)∥∥
H?
.

The proof follows from arguing that θn → θ?, ∇`(z, θn)→ ∇`(z, θ?), and Hn(θn)→ H? in appropriate sense.
The first comes from a localization result of Ostrovskii and Bach (2021) that states that θn lies in a Dikin
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Table 1: The number of calls to a Hessian-vector product oracle u 7→ ∇2`(z, θ)u so that (a) the computational
error is at most ε, and (b) the total error is at most ε in the sense of Proposition 2. We show the dependence
of the former on the condition number κn = L/λmin(Hn(θn)), the optimal magnitude ∆n = ‖In(z)‖2Hn(θn),
and the SGD noise σ2

n, defined in Appendix E.3. The total error bound depends on the corresponding
population quantities κ? = L/λmin(H?), ∆? = ‖I(z)‖2H? , and σ2

?, as well the effective dimension p?. We
omit the dependence on problem constants R,L,K1,K2, σ

2
H , as well as logarithmic terms in p, p?, δ. For the

low-rank approximation, we assume that the total complexity to obtain a rank-k approximation is O(k) full
batch Hessian-vector products. We present computational error bounds assuming the eigenvalues λi(Hn(θn))
of Hn(θn) decay polynomially as i−β (β > 1) or exponentially as e−νi (ν > 0). The same decay is assumed
for H? for the total error bound. The full proofs of these bounds are given in Appendix E.

Method Computational Error Total Error Remark

Conjugate Gradient n
√
κn log ∆n

ε
κ3/2
? p2?
ε log ∆?

ε Corollary 14

SGD σ2
n

ε + κn log κn∆n

ε
σ2
?

ε + κ? log κ?∆?

ε Corollary 18

SVRG (n+ κn) log κn∆n

ε κ?

(
1 +

p2?
ε

)
log κ?∆?

ε Corollary 21

Accelerated SVRG (n+
√
nκn) log κn∆n

ε κ?

(√
p2?
ε +

p2?
ε

)
log κ?∆?

ε Corollary 21

Low-Rank Approx. (λi ∝ i−β) n
(
κn∆n

ε

) 1
β−1

(
κ?
ε

) β
β−1 p2

?∆
1

β−1
? Corollary 23

Low-Rank Approx. (λi ∝ e−νi) n
ν log κn∆n

ε
κ?p

2
?

νε log κ?∆?

ε Corollary 23

ellipsoid of radius
√
p?/n around θ? for n large enough, i.e., ‖θn − θ?‖2H? . p?/n. The second comes from

arguing using pseudo self-concordance that the gradient ∇`(z, ·) is Lipschitz w.r.t. ‖·‖H? in the Dikin Ellipsoid
around θ?. For the last one, we argue that Hn(θn) ≈ Hn(θ?) from pseudo self-concordance, and formalize
Hn(θ?)→ H? by matrix concentration.

3.2 Computational and Total Error Bounds
We consider iterative first-order algorithms to compute the influence function In(z) = arg minu gn(u) by
minimizing the convex quadratic gn(u) defined in (9).

We aim to find an ε-approximate minimizer u that satisfies E[‖u− In(z)‖2Hn(θn)|Z1:n] ≤ ε. This error
criterion is not only affine-invariant, but is also equivalent to E[gn(u)−min gn|Z1:n] ≤ 2ε. Throughout this
section, we assume for all z ∈ Z that `(z, ·) is L-smooth, i.e., ‖∇2`(z, θ)‖2 ≤ L for all θ. The complexity of
minimizing gn with first order algorithms depends on the condition number κn := L/λmin

(
Hn(θn)

)
. The

corresponding condition number of the population Hessian H? is κ? := L/λmin(H?) = L/µ?.
Any ε-approximate minimizer În(z) of gn satisfies the following total error bound.

Proposition 2. Consider the setting of Theorem 1, and let G denote the event under which its conclusions
hold. Let În(θ) be an estimate of In(θ) that satisfies E

[
‖În(z)− In(z)‖2Hn(θn)|Z1:n

]
≤ ε. Then,

E
[
‖În(z)− I(z)‖2H?

∣∣∣G] ≤ 8ε+ C
R2p2

?

µ?n
log3 p

δ
,

where C = CK1,K2,σH is as in Theorem 1.

This bound is obtained by translating the approximation error in the Hn(θn)-norm to the H?-norm using
the spectral Hessian approximation under G and the triangle inequality.

The conjugate gradient method is known to require Tn(ε) :=
√
κn log

(
‖In(z)‖2Hn(θn)/ε

)
iterations

(ignoring constants) to return an ε-approximate minimizer (e.g. Saad, 2003; Chen, 2005; Bai and Pan, 2021).
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Since each iteration requires n Hessian-vector products, the total computational complexity to obtain an
ε-approximate minimizer is O

(
nTn(ε)

)
. To make the statistical error ‖In(z)− I(z)‖2H? to be smaller than ε,

we must choose n ≥ n(ε) = Õ
(
R2p2

?/(µ?ε)
)
(ignoring constants and logarithmic factors). Proposition 2 now

says that the overall computational complexity to reduce the total error under O(ε) is O
(
n(ε)T (ε)

)
.

Table 1 presents this bound with sample-dependent quantities such as κn and ‖In(z)‖Hn(θn) translated to
their population versions. Table 1 also lists the corresponding bounds for the other algorithms we consider.
We discuss the implications of the total error bounds. We use Õ(·) to suppress logarithmic terms in 1/ε
below.

Marginal benefits of variance reduction. For a fixed n, the computational error bounds agree with
conventional wisdom that SVRG is significantly faster than SGD, especially for small ε. Indeed, the error
Õ(n+ κn) of SVRG only depends logarithmically on 1/ε, while the SGD error Õ(σ2

n/ε+ κn) is polynomial.
However, the statistical error bounds suggest that the sample size must be chosen as n = Õ(R2p2

?/µ?ε), so
the total error of SVRG scales as 1/ε. This matches SGD up to constants. SVRG has better constants only
if the SGD noise σ2

? > p2
?/µ? is large.

Marginal benefits of acceleration. For fixed n, accelerated SVRG’s rate of Õ(n+
√
nκn) is faster than

SVRG for ill-conditioned problems where κn > n, but is no worse for well-conditioned problems where κn ≤ n.
To have a small total error, we need n ≤ Õ(1/ε), while the condition numbers satisfy κn ≤ 4κ? for κn a
constant (under Theorem 1). Thus, for ε small, the problem is well-conditioned and acceleration helps.

Stochastic methods outperform full batch methods. The total error of the conjugate gradient method
is Õ(κ

3/2
? p2

?/ε) while SVRG is Õ(κ?p
2
?/ε). Thus, SVRG always has better constants than the conjugate

gradient method. This is also true of accelerated SVRG.

Low-rank approximations work for faster eigendecay. For a slow polynomial decay λi(H?) ∝ i−β of
the eigenvalues of H? for β > 1, the total error scales as ε−β/(β−1), which is worse than the 1/ε rate for all
other methods considered. However, for a faster exponential decay λi(H?) ∝ e−νi for ν > 0, its 1/ε rate
matches SVRG exactly up to a factor of ν, despite being a full batch method.

4 MOST INFLUENTIAL DATA SUBSETS
We now turn to the subset influence defined in Section 2. We start by formalizing the population limit and
then establish statistical error bounds. Let h : Θ → R be a continuously differentiable test function and
α ∈ (0, 1) be fixed throughout. We only consider n where αn is an integer.

Population limit. In order to derive the population limit of the subset influence Iα,n(h) from (8), we
interpret the weights w ∈Wα ⊂ ∆n−1 as a probability distribution over the n datapoints. This gives

Iα,n(h) = max
w∈Wα

Ei∼w[φn(Zi)],

where φn(z) = −〈∇h(θn), Hn(θn)−1∇`(z, θn)〉. This suggests that the population limit should be
maxQ∈Q EZ∼Q[φ(Z)] over an appropriate set of distributions Q, where φ(z) = −〈∇h(θ?), H

−1
? ∇`(z, θ?)〉.

Since the maximum of a linear program occurs at a corner, we can pass from the max over Wα to its
convex hull

convWα = {w ∈ ∆n−1 : wi(1− α)n ≤ 1 ∀ i } .
Compared to the uniform distribution 1n/n over Z1:n, w ∈ convWα allows for weights that are a factor of
(1− α)−1 larger. If P is a continuous distribution with density fP , then a natural choice for Q is the set of
distributions with density fQ(z) ≤ fP (z)/(1− α).
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We can formalize this discussion through the notion of a tail statistic known as the superquantile or the
conditional value at risk (Rockafellar and Uryasev, 2000). The superquantile of a random variable Z ∼ P at
level α is defined as

Sα(Z) := sup

{
EZ∼Q[Z] :

dQ

dP
≤ 1

1− α

}
,

where dQ/dP denotes the Radon-Nikodym derivative of Q w.r.t. P . This constraint subsumes both the
density ratio constraint in the continuous case and the weight ratio constraint in the discrete case. The
superquantile has a long and storied history in economics and quantitative finance, with recent applications
in machine learning; we refer to (Laguel et al., 2021) for a survey. We overload notation to denote the
superquantile of the empirical measure over v1, · · · , vn as Sα(v1, · · · , vn).

We formalize the connection between the maximum subset influence In,α and the superquantile.

Proposition 3. If αn is an integer, then In,α(h) = Sα(v1, · · · , vn) where vi = −
〈
∇h(θn), Hn(θn)−1∇`(Zi, θn)

〉
.

Proposition 3 motivates us to define the population subset influence as

Iα(h) = Sα

[
−∇h(θ?)

>H(θ∗)
−1∇`(Z, θ?)

]
. (12)

Assumptions. We need to strengthen the assumptions made for Theorem 1 for technical reasons.
(a) For any z ∈ Z, the loss function `(z, ·) is R-pseudo self-concordant.
(b) The normalized gradient is bounded as ‖∇`(z, θ)‖H−1

?
≤M1 for all θ satisfying ‖θ − θ?‖H−1

?
≤ ρ and

z ∈ Z.
(c) The normalized Hessian is bounded as ‖H−1/2

? ∇2`(z, θ)H
−1/2
? ‖2 ≤M2 for all θ satisfying ‖θ − θ?‖H? ≤ ρ

and z ∈ Z.
(d) The test function h is bounded as ‖∇h(θ)‖H−1

?
≤ M ′1 and ‖H−1/2

? ∇2h(θ)H
−1/2
? ‖2 ≤ M ′2 for all

‖θ − θ?‖H? ≤ ρ.
The boundedness of the normalized gradient H−1/2

? ∇`(z, θ) implied by assumption (b) implies that it is
sub-Gaussian, as we assumed for Theorem 1. Similarly, assumption (c) strengthens the Bernstein condition
on the normalized Hessian in Theorem 1 into a spectral norm bound. Finally, assumption (d) asserts the
boundedness of the test function h. We make these assumption in a neighborhood around θ?.

Statistical bound. We now state our main bound.

Theorem 4. Suppose the assumptions above hold and the sample size n satisfies the condition in Theorem 1.
Then, we have with probability at least 1− δ,

(
Iα,n(h)− Iα(h)

)2 ≤ CM1,M2,M ′1,M
′
2

(1− α)2

R2p?
µ?n

log
n ∨ p
δ

.

Theorem 4 has the same merits as Theorem 1: it uses the effective dimension p? and exhibits only a
logarithmic dependence on the ambient dimension p. We square the left side so that it scales for α→ 0 as
the squared norm ‖(1/n)

∑n
i=1 In(Zi)− EZ∼P [I(Z)]‖2H? , comparable to Theorem 1. We get a fast log n/n

rate rather than a slow 1/
√
n rate.

The proof relies on the equivalent expression

Sα(Z) = inf
η∈R

{
Φ(Z, η) := η +

1

1− αE(Z − η)+

}
of the superquantile where (·)+ = max{·, 0}. We analyze the convergence of Φ

(
φn(Z1:n), η

)
to Φ(φ(Z), η) for

fixed η using the same techniques as Theorem 1. Then, we construct an ε-net so the bound holds for all η,
including the minimizer. The full proof is given in Appendix F.
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Figure 2: Convergence of the empirical influence function to the population (solid line) compared to the
bound of Theorem 1 (dotted line) with linear regression and classification models for simulated (left two) and
real data (right two). We plot the mean over 100 repetitions and the shaded area denotes the 95% standard
error.

Related work. Influence functions or curves have originally been proposed by Hampel (1974), partly
motivated by Jaeckel (1972) and his “infinitesimal jackknife”. Cook and Weisberg (1982) showed that the
influence function can be computed using inverse Hessian gradient products. Recent works on influence
functions include (Cook, 1986; Hadi et al., 1995; Zhu and Zhang, 2004; Ma et al., 2014; Zhao et al., 2019).
The theoretical statistical analysis has mostly focused on large-sample asymptotics hence in small dimensions,
and we refer to the recent work (Avella-Medina, 2017) for a comprehensive survey.

Efficiently computing influence functions, or related inverse-Hessian-vector products quantities, has
received attention recently in the context of the training of deep neural networks using natural gradient
or Newton-like algorithms (Henriques et al., 2019). Specifically on influence functions, stochastic convex
optimization algorithms (Agarwal et al., 2017), conjugate gradient methods (Saad, 2003) and low-rank
variants (Schioppa et al., 2022) have been applied. The recent discovery of linear convergence for variance
reduced optimization algorithms makes them potentially competitive for the efficient computation of influence
functions.

5 EXPERIMENTS
We explore the convergence of the empirical influence function to its population counterpart for classical
linear models. We also report the findings from large attention based models, for which little statistical theory
is known, yet maximum influential subsets can still be computed as for any black-box model. Appendix G
contains fulls details of this section. The code as well as the scripts to reproduce the experiments are made
publicly available online https://github.com/jfisher52/influence_theory.

5.1 Linear Models
We consider synthetic ridge regression and binary logistic regression in R9. The input x ∼ N (0, I) is normal
and the outputs are generated with a linear or logistic model from i.i.d. noise based on a fixed θ?. We also
consider two real datasets: (1) Oregon Medicaid (Finkelstein et al., 2012), where the goal is to estimate
the overall health (classification) and the number of good health days in the last month (regression) of an
individual, and (2) Cash Transfer (Angelucci and De Giorgi, 2009), where the goal is to estimate the total
consumption of an individual (regression). Both datasets use some economic and demographic features and
treatments as inputs to the model; they contain 20K and 50K points respectively.

We plot the statistical convergence of the exact empirical influence In(z) to the population influence I(z)
for fixed z using various sample sizes n as well as the bound of Theorem 1. For the real data, we use the full
dataset as the population. We measure the influence of points z that are outliers added to the training set
for the simulations and a random sample for the real data.

Results: tightness of Theorem 1. The results are given in Figure 2. We see for the simulated datasets
(left two plots) that the empirical observations for a straight line in log-log scale whose slope matches that
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Figure 3: Left two: Convergence of the approximate empirical influence to the population for text generation
tasks measured in terms of predictions as in (13). The solid line denotes the mean of |Gn(zi) − G(zi)|
for i = 1, · · · , 4 and the shaded area denotes its standard deviation. Right two: Convergence of the
influence value Iα,n(hi) found by the most influential subset method to its population version Iα(hi) on the
question-answering task for different test functions hi = `(ztest,i, θ).

of the bound. This indicates that the 1/n rate of our bounds is also observed empirically.1 This is also
approximately true for the regression line in the Oregon Medicaid dataset. We note that its classification line
and the Cash Transfer dataset have slopes that differ from the bound. This phenomenon could be due to the
error in the population influence used for the plots: we approximate it from a larger data sample because we
do not have access to the population distribution. Note that we do not see such a behavior in the simulated
classification task where we can more accurately approximate the population. In all of these cases, Theorem 1
is still an upper bound on the empirical error.

5.2 Large Transformer Language Models
Setup. We consider (a) a question-answering task where the goal is to respond to a natural language
question with a factually correct answer, and (b) a text continuation task where the goal is to generate ten
tokens following a given context. We use a BART-base model (Lewis et al., 2020) on the zsRE dataset (Levy
et al., 2017) and a DistilGPT-2 model (Sanh et al., 2019) on the WikiText-103 dataset (Merity et al., 2017)
respectively. We subsample the training set size for various n and finetune a pretrained model to get θn. We
take the largest value of n as the population version: this value was 5K and 2K respectively. We estimate the
population influence with 100 epochs of SVRG, while we use 50 passes through the data for the approximate
methods. We compute the influence In(z) for 5 points z1, · · · , z5. The quadratic gn from (9) is nonconvex
and unbounded below if the Hessian Hn(θn) is not positive semidefinite; we find this to be the case for our
experiments with the deep nets. To overcome this, we consider

In,λ(z) = −
(
Hn(θn) + λI

)−1∇`(z, θn) .

We choose the smallest λ so that the quadratic objective gn(ut) from (9) is bounded below for iterates ut
obtained from SGD, ensuring that H + λI is positive semidefinite.

Error criterion. The norm ‖În(z)− I(z)‖ bound may be vacuous for failing to capture the permutation
symmetries of the parameters of a deep network. Instead, we measure the effect of a point z on a test function
h(θ) = `(ztest, θ) as

Gn(z) = 〈∇h(θn), In,λ(z)〉 , (13)

and compare it against its population counterpart G(z). From the chain rule, it follows that G(z) is the
linearization d

dεh(θn,ε,z)|ε=0 similar to (3). In our experiments, h(θ) is the loss on the test set. The results
are given in Figure 3.

Results: total error versus n. For the question-answering task, the error reduces by a factor of 10 as n
increases from 40 to 300 (slope ≈ −1.5) indicating an empirical n−1.5 rate. For the text continuation task,

1A log-log plot of y = cxa is a straight line with slope a.
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Figure 4: As the sample size n increases, we see a shift in the quality of the most influential questions. Lower
n results in surface level attributes, such as question type, while larger n results in deeper features, such as
topic.

we find that the error in influence estimation does not vary significantly with n and has a high variance.
Indeed, the open-ended nature of the text continuation task suggests that no one point z should have a large
influence on the predictions of a test point ztest, leading to noisy influence estimates.

Comparing computational approximations. We observe that SGD ≈ SVRG in Figure 3. This corrob-
orates the total error bounds of Table 1 which show that variance-reduced SVRG has the same total error
as SGD despite being significantly faster in optimization. At a large computation budget, we find that the
conjugate gradient method also exhibits an error comparable to SGD and SVRG. The benefits of stochastic
algorithms such as SGD become evident for large datasets where SGD gives a reasonable estimate without
even making a full pass (its error is independent of n, cf. Table 1). For the question-answering dataset, we
find that the low-rank approximation provided by the Arnoldi method (Schioppa et al., 2022) has the smallest
error for n ≤ 200, while it is identical to the others for large n.

Most influential subsets. We repeat the question-answering experiment to find the most influential subset
of data for different n with test function hi(θ) = `(ztest,i, θ) for four chosen test points. We use the low-rank
(Arnoldi) method to approximate the inverse Hessian-vector product because this method has the best error
properties in Figure 3 (left two). For different values of α, we observe that the estimation error tends to
decrease with n.

The type of influential examples recovered varied from surface-level attributes to deeper features, such
as topics, as n increased; see Figure 4 for examples. In some cases, the most influential examples were
semantically related questions with different answers. For instance, for the test question "Was Goldmoon
male or female" (female), a highly negatively influential questions was "What is the gender of Jacques
Rivard?" (male). However for others the relations seemed more structural. For example, the test question
"The nationality of Jean-Louis Laya was what?" (French), we recovered as highly negatively influential, "The
nationality of Yitzhak Rabin is?" (Hebrew).

6 CONCLUSION
As statistical learning models and deep nets are being increasingly used, influence diagnostics are precious
tools to study the influence of datapoints on predictions, decisions, and outcomes. In this paper, we
presented statistical and computational guarantees for influence functions for generalized linear models. We
established the statistical consistency of most influential subsets method (Broderick et al., 2020) together
with nonasymptotic bounds. We illustrated our results on simulated and real datasets. Extending our results
to sparse regularized models as well as deep neural network models are interesting venues for future work.
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A Notation Review
Setup. We review notation from the paper, which will be used throughout the appendix. We define the
parameter of interest θ? ∈ Θ = Rp as

θ? := arg min
θ∈Θ

[
F (θ) := EZ∼P [`(Z, θ)]

]
,

where P is an unknown probability distribution over a data space Z and ` : Z ×Θ→ R+ is a loss function.
We define the estimate of θ? using an i.i.d. sample Z1:n := (Z1, · · · , Zn) ∼ Pn as

θn := arg min
θ∈Θ

1

n

n∑
i=1

`(Zi, θ).

We define the gradient of the loss function as S = ∇θ`(Z, θ) and the estimate of the gradient of the loss
function as S(θn) = ∇θn`(Z, θn) .

We define the population Hessian H? = ∇2
θ?
`(z, θ?) of the population objective and the estimate of the

Hessian as Hn(θ) := 1
n

∑n
i=1∇2

θ`(Zi, θ).

Influence function. We define G? = CovZ∼P (∇θ?`(Z, θ?)) the gradient covariance at θ? and the effective
dimension p? = Tr(H

−1/2
? G?H

−1/2
? ). We define the population influence function as I(z) := H−1

? ∇θ?`(z, θ?).
We quantify the influence of a fixed data point z on the estimator θn as In(z) defined as

In(z) = −Hn(θn)−1∇`(z, θn) .

Most influential subset. Let α ∈ (0, 1) and h : Rp → R be a continuously differentiable test function.
Then we define the weights w in the probability simplex ∆n−1θn,w := arg minθ∈Θ

∑n
i=1 wi`(Zi, θ) and use

them to define Wα as

Wα :=

{
w ∈ ∆n−1 :

at most αn elements of w
are zero and the rest are
equal

}
.

The maximum influence of any subset of data of size at most αn for a test function h is expressed by

Iα,n(h) = max
w∈Wα

n∑
i=1

wi −
〈
∇h(θn), Hn(θn)−1∇`(Zi, θn)

〉
.

The population subset influence is defined as,

Iα(h) = Sα

[
−∇h(θ?)

>H(θ∗)
−1∇`(Z, θ?)

]
, (14)

where Sα is the superquantile at level α. We refer to Appendix H.5.

Miscellaneous. Also, we define the convex hull as conv T for a set T ⊂ Rn, ‖x‖A = 〈x,Ax〉 for a positive
definite A, and V(M) = E[MM>]− E[M ]E[M ]> for a random matrix M .

We also denote dQ/dP as the Radon-Nikodym derivative of Q w.r.t. P . When P and Q have respective
densities p, q, we have dQ/dP (z) = q(z)/p(z) as simply the density ratio or likelihood ratio.

Lastly we define the minimum eigenvalue λmin and the condition number of matrix A with ‖A‖2 ≤ L, as
κ = L/λmin(A).

B Review of Computational Approaches
We present the pseudocode of the various computational approaches we consider in this work:
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• Algorithm 1: The conjugate gradient method,

• Algorithm 2: Stochastic gradient descent,

• Algorithm 3: LiSSA,

• Algorithm 4: the stochastic variance-reduced gradient (SVRG) method,

• Algorithm 5: low-rank approximation via the Arnoldi/Lanczos iterations.

Algorithm 1 Conjugate Gradient Method to Compute the Influence Function

Input: vector v, batch Hessian vector product oracle HVPn(u) = Hn(θn)u, number of iterations T
1: u0 = 0, r0 = −v −HVPn(u0), d0 = r0

2: for t = 0, ..., T − 1 do
3: αt =

d>t rt
d>t HVPn(dt)

4: ut+1 = ut + αtdt
5: rt+1 = −v −HVPn(ut+1)

6: βt =
r>t+1rt+1

r>t rt

7: dt+1 = rt+1 + βtdt

8: return uT

Algorithm 2 Stochastic Gradient Descent Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2`(zi, θn)u, number of iterations T , learning
rate γ

1: u0 = 0
2: for t = 0, ..., T − 1 do
3: Sample it ∼ Unif([n])
4: ut+1 = ut − γ(HVP(it, ut) + v)

5: return uT

Algorithm 3 The LiSSA Method to Compute the Influence Function (Agarwal et al., 2017)

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2`(zi, θn)u, number of approximations S,
number of iterations T , scaling factor γ

1: for s = 1, ..., S do
2: u

(s)
0 = −v

3: for t = 0, ..., T − 1 do
4: Sample it ∼ Unif([n])

5: u
(s)
t+1 = −γv + u

(s)
t − γHVP(it, u

(s)
t )

6: uT = 1
S

(∑S
s=1 u

(s)
T

)
7: return uT

Connection between SGD and LiSSA. Observe that the updates of LiSSA for a fixed s are identical to
that of SGD:

u
(s)
t+1 = −γv + u

(s)
t − γHVP(it, u

(s)
t ) = u

(s)
t − γ(HVP(it, u

(s)
t ) + v) .

Formally, we show that the sequence u1, ..., ut produced by stochastic gradient descent with initial guess
u0 = −v (instead of u0 = 0 as required by Algorithm 2) and u′1, ..., u′t produced by LiSSA with number of
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repetitions S = 1 are identical. Note that u0 = u′0 = −v. We show by induction that the two sequences (ut)
and (u′t) are identical provided the same samples i0, · · · , iT−1 are drawn. Suppose ut = u′t for some t ≥ 0.
We have,

u′t+1 = −γv + u′t − γHVP(it, u
′
t) = u′t − γ(HVP(it, u

′
t) + v) = ut − γ(HVP(it, ut) + v) = ut+1,

showing that the sequences are identical.

Algorithm 4 Stochastic Variance Reduced Gradient Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2`(zi, θn)u, number of epochs S, number of
iterations per epoch T , learning rate γ

1: u
(0)
T = 0

2: for s = 1, 2, ..., S do
3: u

(s)
0 = u

(s−1)
T

4: ũ
(s)
0 = 1

n

∑n
i=1 HVP(u

(s)
0 )− v

5: for t = 0, ..., T − 1 do
6: Sample it ∼ Unif([n])

7: u
(s)
t+1 = u

(s)
t − γ(HVP(it, u

(s)
t )−HVP(it, u

(s)
0 ) + ũ

(s)
0 )

8: return u
(S)
T

Algorithm 5 Arnoldi Method to Compute the Influence Function (Schioppa et al., 2022)

Input: vector v, test function h, initial guess u0, batch Hessian vector product oracle HVPn(u) = Hn(θn)u,
number of top eigenvalues k, number of iterations T

Output: An estimate of 〈∇h(θ), Hn(θn)−1v〉
1: Obtain Λ, G = Arnoldi(u0, T, k) . Cache the results for future calls
2: return 〈G∇h(θ),Λ−1Gv〉

3: procedure Arnoldi(u0, T , k)
4: w0 = 1 = u0/‖u0‖2
5: A = 0T+1×T
6: for t = 1, ..., T do
7: Set ut = HVPn(wt)−

∑t
j=1〈ut, wj〉wj

8: Set Aj,t = 〈ut, wj〉 for j = 1, . . . , t and At+1,t = ‖ut‖2
9: Update wt+1 = ut/‖ut‖

10: Set Ã = A[1 : T, :] ∈ RT×T (discard the last row)
11: Compute an eigenvalue decomposition Ã =

∑T
j=1 λjeje

>
j with λj ’s in descending order

12: Define G : Rp → Rk as the operator Gu =
(
〈u,W>e1〉, · · · , 〈u,W>ek〉

)
, where W = (w>1 ; · · · ;w>T ) ∈

RT×p
13: return diagonal matrix Λ = Diag(λ1, · · · , λk) and the operator G

C Effective Dimension and Eigenspectra of the Hessian and Gradi-
ent Covariance

Recall the following definitions, the population Hessian H? = ∇2F (θ?) of the population objective and
G? = CovZ∼P (∇`(Z, θ?)) the gradient covariance at θ?. We are interested in how the effective dimension
p? = Tr(H−1/2

? G?H
−1/2
? ) differs from the parameter dimension p due to the eigendecay of H?. First, we

assume that H? and G? share the same eigenvectors. Then, using the eigenvalue decomposition of a matrix,
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we can say that for Q containing the eigenvectors as its columns,

H? = QΛHQ
>,

G? = QΛGQ
>

where ΛA = Diag{λa,i} contains the eigenvalues of A in non-increasing order. Therefore we get

H
−1/2
? = QΛ

−1/2
H Q> .

Using these definitions we now show the following,

H
−1/2
? G?H

−1/2
? = (QΛ

−1/2
H Q>)(QΛGQ

>)(QΛ
−1/2
H Q>)

= QΛ
−1/2
H ΛGΛ

−1/2
H Q>

= QDiag
{
λg,1
λh,1

...
λg,p
λh,p

}
Q>.

Therefore, due to the cyclic property of traces we define,

Tr(H
−1/2
? G?H

−1/2
? ) =

p∑
i=1

λg,i
λh,i

.

Here we have shown that the dimension dependency of p? is dependent on the eigendecay of G(θ?) and H(θ?).
To illustrate this point, we show four examples of how theses calculations continue. All examples are outlined
in Table 2.

Polynomial - polynomial eigendecay. We assume that both G(θ?) andH(θ?) have polynomial eigendecay,
that is λg,i . i−α and λh,i . i−β . Then we can write,

p? .
p∑
i=1

iβ−α .
∫ p

1

xβ−αdx . pβ−α+1.

Polynomial - exponential eigendecay. We assume that G(θ?) has polynomial eigendecay and H(θ?)
have exponential eigendecay, that is λg,i . i−α and λh,i . e−νi. Then we can write,

p? .
p∑
i=1

eνii−α . p1−αeνp,

where the last inequality holds because eνxx−α is increasing when x is large enough.

Exponential - polynomial eigendecay. We assume that G(θ?) has exponential eigendecay and H(θ?)
have polynomial eigendecay, that is λg,i . e−µi and λh,i . i−β . Then we can write,

p? .
p∑
i=1

e−µiiβ . 1,

where the last inequality holds because e−µxxβ is decreasing when x is large enough.

Exponential - exponential eigendecay. We assume that G(θ?) has exponential eigendecay and H(θ?)
have exponential eigendecay, that is λg,i . e−iµ and λh,i . e−iν . Then we can write,

p? .
p∑
i=1

e(ν−µ)i.
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Table 2: Comparison between the effective dimension p? and the parameter dimension p in different regimes
of eigendecays of G(θ?) and H(θ?) assuming they share the same eigenvectors.

Eigendecay Dimension Dependency Ratio
G(θ?) H(θ?) p? p p?/p

Poly-Poly i−α i−β p(β−α+1)∨0 p p(β−α)∨(−1)

Poly-Exp i−α e−νi p1−αeνp p p−αeνp

Exp-Poly e−µi i−β 1 p p−1

Exp-Exp e−µi e−νi
p if µ = ν

1 if µ > ν

e(ν−µ)p if µ < ν

p

1 if µ = ν

p−1 if µ > ν

p−1e(ν−µ)p if µ < ν

If µ > ν, then

p∑
i=1

e(ν−µ)i . 1.

If µ < ν, then

p∑
i=1

e(ν−µ)i .
∫ p

1

e(ν−µ)i =
1

ν − µ

(
e(ν−µ)p − e(ν−µ)

)
. e(ν−µ)p.

And if µ = ν, then

p∑
i=1

e0 = p.

D Statistical Error Bounds for Influence Estimation
The main purpose of this section is to prove the statistical error bound Theorem 1. We use C to denote an
absolute constant which may change from line to line. We use subscripts to emphasize the dependency on
problem-specific constants, e.g., CK1

is a constant that only depends on K1.
Let z be a fixed data point not related to the sample Z1, · · · , Zn ∼ P . Recall that the influence of

upweighting an observation z on the model parameter θ is given by

In(z) = −Hn(θn)−1S(z, θn), (15)

where Hn(θ) := 1
n

∑n
i=1∇2

θ`(Zi, θ) is the empirical Hessian and S(z, θ) := ∇θ`(z, θ) is the gradient at z. Let
θ? be the minimizer (assumed to exist) of the population risk E[`(z, θ)] and H(θ) := E[∇2

θ`(z, θ)]. We write
H? := H(θ?) for short. We are interested in bounding the difference

E := ‖Hn(θn)−1S(z, θn)−H−1
? S(z, θ?)‖H? ,

where ‖u‖A :=
√
u>Au for a vector u and a positive semidefinite matrix A.

D.1 Assumptions
We state the full assumptions under which the statistical bound holds.
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Assumption 1. For any z ∈ Z, the loss function `(z, ·) is pseudo self-concordant for some R > 0:

|D3
θ`(z, θ)[u, u, v]| ≤ R‖u‖2∇2`(z,θ) ‖v‖2 ,

where D3
xf(x)[u, v, w] := d

dt 〈u,∇2f(x+ tw) v〉|t=0 for f thrice continuously differentiable.

The most useful consequence of this assumption is a spectral approximation of the Hessian (1/2)H(θ′) �
H(θ) � 2H(θ′) for θ and θ′ close enough in terms of the L2 distance.

Assumption 2. (Sub-Gaussian Gradient). There exists a constant K1 > 0 such that the normalized gradient
H(θ?)

−1/2∇`(Z, θ?) at θ? is sub-Gaussian with parameter K1 (see Appendix H.1 for a precise definition).

Assumption 3. (Matrix Bernstein of Hessian). The standardized Hessian H(θ?)
−1/2∇2`(Z, θ?)H(θ?)

−1/2−
Ip at θ? satisfies a Bernstein condition with parameter K2 (see Appendix H.1 for a definition). Moreover,

σ2
H :=

∥∥∥V(H(θ?)
−1/2∇2`(Z, θ?)H(θ?)

−1/2
)∥∥∥

2

is finite where we denote V(M) = E[MM>]− E[M ]E[M ]> for a random matrix M .

D.2 Proof of the Statistical Bound of Theorem 1
We now state and prove the full version of Theorem 1. Note that this bound is stated in terms of the H?

norm but without the square.

Theorem 1. Under Assumptions 1,2, and 3, we have, with probability at least 1− δ,

E ≤ CK1,K2,σH log

(
2p

δ

)√
log
(e
δ

)(
1 +R

√
p?
µ?

)√
p?
n

whenever n ≥ CK1,K2,σH

(
p?
µ?
R2 log

(
e
δ

)
+ log

(
2p
δ

))
, where p? := Tr{H−1/2

? G?H
−1/2
? } and µ? = λmin(H?).

Proof. Define

rn :=

√
CK2

1 log (2e/δ)
p?
n

tn :=
2σ2

H

−K2 +
√
K2

2 + 2σ2
Hn/ log (4p/δ)

.

(16)

Note that they both decay as O(n−1/2). The proof consists of several key steps.
Step 1. Upper bound E by basic terms involving the standardized gradient and the stan-

dardized Hessian. By the triangle inequality, it holds that

E ≤ ‖(Hn(θn)−1 −H−1
? )S(z, θn)‖H? + ‖H−1

? (S(z, θn)− S(z, θ?))‖H? . (17)

The first term in (17) can be upper bounded by

‖[Hn(θn)−1 −H−1
? ][S(z, θn)− S(z, θ?)]‖H? + ‖[Hn(θn)−1 −H−1

? ]S(z, θ?)‖H? . (18)

By the triangle inequality again, it can be shown that, for any v ∈ Rp,

‖[Hn(θn)−1 −H−1
? ]v‖H? = ‖[H1/2

? H−1
n (θn)H

1/2
? −H−1/2

? H
1/2
? ]H

−1/2
? v‖

≤ ‖H1/2
? H−1

n (θn)H
1/2
? − Ip‖‖H−1/2

? v‖.

As a result, (18) can be further upper bounded by

‖H1/2
? Hn(θn)−1H

1/2
? − Ip‖2︸ ︷︷ ︸

A3

{
‖H−1/2

? [S(z, θn)− S(z, θ?)]‖2︸ ︷︷ ︸
A2

+ ‖H−1/2
? S(z, θ?)‖2︸ ︷︷ ︸

A1

}
.
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Similarly, the second term in (17) can be upper bounded by

‖H−1/2
? [S(z, θn)− S(z, θ?)]‖ = A2.

Hence, it suffices to bound the three terms A1, A2, and A3. For that purpose, we define the following events

G1 :=
{
‖H−1/2

? S(z, θ?)‖2 ≤ CK2
1 log (e/δ)p?

}
G2 :=

{
‖θn − θ?‖2H? ≤ CK

2
1 log(e/δ)

p?
n

}
G3 :=

{
‖H−1/2

? H(z, θ?)H
−1/2
? − Ip‖ ≤ t1

}
G4 :=

{
‖H1/2

? Hn(θn)−1H
1/2
? − Ip‖2 ≤

Rrn/
√
µ? + tn

1−Rrn/√µ? − tn

}
.

Moreover, we assume n ≥ max{4(K2 + 2σ2
H) log(16p/δ), CK2

1 log(e/δ)p?R
2/µ?} throughout the proof. In

the following, we bound A1, A2, A3 on the event G1G2G3G4, and control the probability of this event.
Step 2. Control A1. On the event G1, we know

A1 ≤
√
CK2

1 log (e/δ)p?.

Step 3. Control A2. According to Taylor’s theorem, it holds that

S(z, θn)− S(z, θ?) = H(z, θ̄)(θn − θ?),

where θ̄ ∈ Conv{θn, θ?}. Therefore, we can rewrite A2 as

A2 = ‖H−1/2
? H(z, θ̄)(θn − θ?)‖2

= ‖H−1/2
? H(z, θ̄)H

−1/2
? H

1/2
? (θn − θ?)‖2.

Consequently,

A2 ≤ ‖H−1/2
? H(z, θ̄)H

−1/2
? ‖2‖H

1/2
? (θn − θ?)‖2.

According to Proposition 29, we have

e−R‖θ̄−θ?‖2H(z, θ?) � H(z, θ̄) � eR‖θ̄−θ?‖2H(z, θ?).

Note that R‖θ̄ − θ?‖2 ≤ R‖θn − θ?‖2 ≤ Rµ
−1/2
? ‖θn − θ?‖H? . It follows from the event G2 that

1

2
H(z, θ?) � H(z, θ̄) � 2H(z, θ?). (19)

As a result, we have

‖H−1/2
? H(z, θ̄)H

−1/2
? ‖ ≤ 2‖H−1/2

? H(z, θ?)H
−1/2
? ‖.

On the event G3, we know

‖H−1/2
? H(z, θ?)H

−1/2
? ‖ ≤ 1 + t1. (20)

Therefore, by the event G2 and (20), A2 is upper bounded by

A2 ≤ C(1 + t1)rn.

Step 4. Control A3. On the event G4, we have

A3 ≤
Rrn/

√
µ? + tn

1−Rrn/√µ? − tn
.
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Step 5. Control the probability of the event G1G2G3G4.
Event G1. Since θ? is a minimizer of the population risk, then, by the first order optimality condition, we

have E[S(z, θ?)] = 0. Moreover, we have

Cov(G
−1/2
? S(z, θ?)) = E[G

−1/2
? S(z, θ?)S(z, θ?)

>G
−1/2
? ]

= G
−1/2
? E[S(z, θ?)S(z, θ?)

>]G
−1/2
?

= G
−1/2
? G?G

−1/2
? = Ip.

It follows that G−1/2
? S(z, θ?) is an isotropic random vector. Let J := G

1/2
? H−1

? G
1/2
? . It can be checked that

‖H−1/2
? S(z, θ?)‖2 = ‖G−1/2

? S(z, θ?)‖2J ,

where we denote ‖A‖B = ‖B1/2AB1/2‖2 for positive semidefinite B. Now it follows from Theorem 35 that,
with probability at least 1− δ/4,

‖H−1/2
? S(z, θ?)‖2 ≤ C

[
Tr(J) +K2

1

(
‖J‖2

√
log(e/δ) + ‖J‖∞ log(1/δ)

)]
≤ CK2

1 log (e/δ)p?,

since ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J) = p?. Therefore, P(G1) ≥ 1− δ/4.
Event G2. By Proposition 9, we have P(G2) ≥ 1− δ/4.
Event G3. By Assumption 3, we know that

H
−1/2
? H(z, θ?)H

−1/2
? − Ip

satisfies a Bernstein condition with parameter K2. It follows from Theorem 37 that P(G3) ≥ 1− δ/4.
Event G4. It follows directly from Proposition 10 that P(G4) ≥ 1− δ/4.
Now, by a union bound, we obtain P(G1G2G3G4) ≥ 1− δ.
Step 6. Conclusion. Putting all the above results together, we have shown that, with probability at

least 1− δ,

E ≤ C Rrn/
√
µ? + tn

1−Rrn/√µ? − tn

[√
K2

1 log (e/δ)p? + (1 + t1)rn

]
+ (1 + t1)rn.

D.3 Intermediate Results
The proof of Theorem 1 relies on two key results: 1) the estimator θn belongs to a neighborhood of θ? stated
in Proposition 9, and 2) the inverse empirical Hessian Hn(θn)−1 is close to it population counterpart H−1

?

stated in Proposition 10. Before we prove them, we give several useful lemmas.

Lemma 5. Under Assumption 1, the empirical risk Fn is pseudo self-concordant with parameter R.

Proof. By Assumption 1, the loss `(Zi, ·) is pseudo self-concordant with parameter R for every i ∈ {1, . . . , n}.
Since Fn(θ) = 1

n

∑n
i=1 `(Zi, θ), we have

|D3
θFn(θ)[u, u, v]| =

∣∣∣∣∣ 1n
n∑
i=1

D3
θ`(Zi, θ)[u, u, v]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|D3
θ`(Zi, θ)[u, u, v]|

≤ 1

n

n∑
i=1

R‖v‖2u>∇2
θ`(Zi, θ)u = R‖v‖2u>∇2

θFn(θ)u.

This completes the proof.

The next lemma provides a sufficient condition for the estimator θn to be close to θ?.
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Lemma 6. Under Assumption 1, whenever

‖Sn(θ?)‖H−1
n (θ?) ≤

√
λmin(Hn(θ?))/(2R),

the estimator θn uniquely exists and satisfies

‖θn − θ?‖Hn(θ?) ≤ 4‖Sn(θ?)‖H−1
n (θ?).

Proof. By Lemma 5, we have Fn is pseudo self-concordant with parameter R. Since θn is the empirical risk
minimizer, the claim follows from Proposition 31 with f = Fn and x = θ?.

Lemma 7. Under Assumption 2, it holds that, with probability at least 1− δ,

‖Sn(θ?)‖2H−1
?
≤ 1

n
CK2

1 log (e/δ)p?.

Proof. Define W :=
√
nG
−1/2
? Sn(θ?). It can be verified that E[W ] =

√
nG
−1/2
? S(θ?) = 0 and

E[WW>] =
1

n
G
−1/2
? E

( n∑
i=1

S(Zi, θ?)

)(
n∑
i=1

S(Zi, θ?)

)>2

G
−1/2
?

= G
−1/2
?

1

n

n∑
i=1

E[S(Zi, θ?)S(Zi, θ?)
>]G

−1/2
? = Ip.

Moreover, by Lemma 34 and Assumption 2, we get that W is sub-Gaussian with ‖W‖ψ2
≤ CK1. Define

J := G
1/2
? H−1

? G
1/2
? /n. It is clear that ‖Sn(θ0)‖2H−1

?
= ‖W‖2J . By Theorem 35, we have, with probability at

least 1− δ,

‖Sn(θ0)‖2H−1
?
≤ CK2

1 log (e/δ)p?.

Here we have used ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J) = p?, log (1/δ) ≤ log (e/δ), and
√

log (e/δ) ≤ log (e/δ).

Lemma 8. Under Assumption 3, it holds that, with probability at least 1− δ,

1

2
H? � Hn(θ?) �

3

2
H?,

whenever n ≥ 4(K2 + 2σ2
H) log (2p/δ).

Proof. By Assumption 3 and Theorem 37, it holds that, for any t > 0,

P
(
‖H−1/2

? Hn(θ?)H
−1/2
? − Ip‖2 ≥ t

)
≤ 2p exp

{
− nt2

2(σ2
H +K2t)

}
.

The claim then follows by setting t = 1/2.

Now we are ready to prove the localization result.

Proposition 9. Under Assumptions 1,2, and 3, we have, with probability at least 1− δ, the estimator θn
uniquely exists and satisfies

‖θn − θ?‖2H? ≤ CK
2
1

p?
n

log

(
2e

δ

)
(21)

whenever n ≥ max{4(K2 + 2σ2
H) log(4p/δ),

CK2
1p?R

2

µ?
log(2e/δ)}.
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Proof. We define two events

G1 :=

{
‖Sn(θ?)‖2H−1

?
≤ 1

n
CK2

1 log(2e/δ)p?

}
G2 :=

{
1

2
H? � Hn(θ?) �

3

2
H?

}
.

It suffices to prove the bound (21) on G1G2 and show P(G1G2) ≥ 1− δ.
Step 1. Prove the bound. By the events G2, we have

√
λmin(Hn(θ?))/(2R) ≥ √µ?/(4R). Note that

n ≥ CK2
1 log(e/δ)p?R

2/µ?. It follows from the event G1 that ‖Sn(θ?)‖H−1
?
≤
√
λmin(Hn(θ?))/(3R). By the

event G2, we have

‖Sn(θ?)‖H−1
n (θ?) ≤

2

3
‖Sn(θ?)‖H−1

?
≤
√
λmin(Hn(θ?))

2R
.

According to Lemma 6, θn uniquely exists and satisfies

‖θn − θ?‖2H? ≤ 16‖Sn(θ?)‖2H−1
n (θ?).

Now the bound (21) follows from the event G1.
Step 2. Control the probability. According to Lemma 7 and Lemma 8, we know P(G1) ≥ 1 − δ/2

and P(G2) ≥ 1− δ/2, respectively. Consequently,

P(G1G2) = 1− P(Gc1Gc2) ≥ 1− P(Gc1)− P(Gc2) ≥ 1− δ,

which completes the proof.

We then bound the difference between the inverse empirical Hessian and the inverse population Hessian.
Recall that we use the notation ‖A‖B := ‖B1/2AB1/2‖2 for B positive semidefinite.

Proposition 10. Under Assumptions 1, 2, and 3, we have, with probability at least 1− δ,

‖Hn(θn)−1 −H−1
? ‖H? ≤ CK1,K2,σH

(√
log

(
2p

δ

)
+R

√
p?
µ?

log
(e
δ

)) 1√
n

whenever n ≥ CK1,K2,σH

(
log
(

2p
δ

)
+ p?

µ?
R2 log

(
e
δ

))
.

Proof. Define

rn :=

√
CK2

1 log (2e/δ)
p?
n

tn :=
2σ2

H

−K2 +
√
K2

2 + 2σ2
Hn/ log (4p/δ)

.

Note that they both decays as O(n−1/2). In the following of the proof, we assume that n ≥ max{4(K2 +
3σ2

H) log(4p/δ), CK2
1 log(2e/δ)p?R

2/µ?}. According to Lemma 32, it suffices to bound ‖Hn(θn)−H?‖H−1
?

.
By the triangle inequality, we have

‖Hn(θn)−H?‖H−1
?
≤ ‖Hn(θn)−Hn(θ?)‖H−1

?︸ ︷︷ ︸
A

+ ‖Hn(θ?)−H?‖H−1
?︸ ︷︷ ︸

B

. (22)

We will control these two terms separately. The strategy is similar to the proof of Proposition 9: we prove
the bound on some events and control the probability of these events. Define

G1 :=

{
‖Sn(θ?)‖2H−1

?
≤ 1

n
CK2

1 log(2e/δ)p?

}
G2 := {(1− tn)H? � Hn(θ?) � (1 + tn)H?} .
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Model Data Loss Function Self-Concordance Parameter R

Linear Regression x ∈ Rp, y ∈ R `(θ, z) := 1
2 (y − θ>x)2 0

Binary Logistic Regression x ∈ Rp, y ∈ {0, 1} `(θ, z) := − log(σ(y · θ>x)) ‖x‖2
Poisson Regression x ∈ Rp, y ∈ N `(θ, z) := −y(θ>x) + exp(θ>x) + log(y!) ‖x‖2
Multiclass Logistic Regression x ∈ Rp, y ∈ {1, ...,K} `(θ, z) := log(1 +

∑K
i=1 e

wTi x)−∑K
i=2 yi(w

>
i X) 2‖x‖2

Table 3: Examples of M-estimation for various generalized linear models and the corresponding values of the
pseudo self-concordance parameter R. Each regression estimates a set of parameters θ based on input values
x and output values y.

When n ≥ 4(K2 + 2σ2
H) log(4p/δ), we have tn ≤ 1/3. It then follows from the proof of Proposition 9 that

‖θn − θ?‖2H? ≤
1

n
CK2

1 log (2e/δ)p? (23)

on the event G1G2 and P(G1) ≥ 1− δ/2.
Step 1. Control A and B. By (23), it holds that ‖θn − θ?‖H? ≤ rn. By Lemma 5 and Lemma 30, we

have

A = ‖Hn(θn)−Hn(θ?)‖H−1
?
≤ ReR‖θn−θ?‖2‖Hn(θ?)‖H−1

?
‖θn − θ?‖2.

Since ‖θn − θ?‖2 ≤ µ
−1/2
? rn and n ≥ CK2

1 log(2e/δ)p?R
2/µ?, we have ‖θn − θ?‖2 ≤ 1/R. As a result,

A ≤ Re‖Hn(θ?)‖H−1
?
rn/
√
µ? ≤ 3Rern/(2

√
µ?),

where the last inequality follows from the event G2 and tn ≤ 1/2. As for B, it follows from the event G2 that
B ≤ tn. Therefore, absorbing 3e/2 into the constant C in rn, we obtain

‖Hn(θn)−H?‖H−1
?
≤ Rrn/

√
µ? + tn.

And it follows from Lemma 32 that

‖Hn(θn)−1 −H−1
? ‖H? ≤

Rrn/
√
µ? + tn

1−Rrn/√µ? − tn
.

Step 2. Control the probability of G1G2. By the matrix Bernstein inequality Theorem 37, we have
P(G2) ≥ 1− δ/2. This implies that P(G1G2) ≥ 1− δ since P(G1) ≥ 1− δ/2.

E Computational Error Bounds
We analyze the computation error of the algorithms discussed in Section 2 used to compute the empirical
influence function. Throughout, we assume that the target precision satisfies ε ≤ ‖I(z)‖2H? . If not, taking
În(z) = 0 satisfies the desired precision and there is nothing to do.

Condition numbers. Throughout, we assume that the loss function `(·, z) is L-smooth for each Z and
that Hn(θn) is invertible. Let µn = λmin(Hn(θn)) denote the minimal eigenvalue. The computational bounds
depend on the condition number

κn :=
L

µn
.

The corresponding population condition number is

κ? =
L

µ?
,

where µ? = λmin(H?). They are related as follows.
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K-Condition numbers. Another useful notion to obtain the convergence rate of the conjugate gradient
method is the K-condition number defined as

Kn :=
[TrHn(θn)/p]p

detHn(θn)
.

Its population counterpart is defined as

K? :=
[TrH?/p]

p

detH?
.

Proposition 11. Consider the setting of Theorem 1, and let G denote the event under which its conclusions
hold. Under this event G, we have,

(a) κn ≤ 4κ?, and

(b) if ‖In(z)− I(z)‖2H? = ε, then ‖In(z)‖2Hn(θn) ≤ 6‖I(z)‖2H? + 6ε.

Proof. We have under G that (1/4)H? � Hn(θn) � 3H?. This implies that µn ≥ µ?/4, TrHn(θn) ≤ 3TrH?,
and detHn(θn) ≥ detH?/4

p. For the second part, we get from the triangle inequality,

‖In(z)‖2Hn(θn) ≤ 3‖In(z)‖2H? ≤ 6‖I(z)‖2H? + 6‖In(z)− I(z)‖2H? .

E.1 Total Error
We combine the computational error with the statistical error to get the total error bound. This is a
restatement of Proposition 2 of the main paper.

Proposition 12. Consider the setting of Theorem 1, and let G denote the event under which its conclusions
hold. Let În(θ) be an estimate of In(θ) that satisfies E

[
‖În(z)− In(z)‖2Hn(θn)

∣∣∣Z1:n

]
≤ ε. Then, we have,

E
[
‖În(z)− I(z)‖2H?

∣∣∣G] ≤ 8ε+ CK1,K2,σH

R2p2
?

µ?n
poly log

p

δ
,

whenever n ≥ CK1,K2,σH

(
p?
µ?
R2 log

(
e
δ

)
+ log

(
2p
δ

))
.

Proof. Following the proof of Theorem 1, we have under G that

1

4
H? � Hn(θn) � 3H? .

Therefore, ‖u‖2H? ≤ 4‖u‖2Hn(θn). Combining this with the triangle inequality completes the proof.

E.2 The Conjugate Gradient Method
We start by recalling the convergence analysis of the conjugate gradient method, providing a full proof for
completeness.

Proposition 13. Consider the sequence (ut) produced by the conjugate gradient method for solving u? =
Hn(θn)−1S(z, θn). It holds that

‖ut − u?‖2Hn(θn) ≤ 4

(√
κn − 1√
κn + 1

)2t

‖u0 − u?‖2Hn(θn).

In other words, we get ‖ut − u?‖2Hn(θn) ≤ ε after tcg iterations, where

tcg ≤
√
κn
2

log

(
4‖u0 − u?‖2Hn(θn)

ε

)
.
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Proof. We follow the proof template of Chen (2005, Chapter 3.4). Throughout, we use the shorthand
A = Hn(θn). By construction, we have uk ∈ Span{p0, . . . , pk−1}. It then follows from pk = rk + βk−1pk−1

that Span{p0, . . . , pk−1} = Span{r0, . . . , rk−1}. Moreover, since rk = b−Auk = rk−1 − αk−1Apk−1, we get

Span{r0, . . . , rk−1} = Span{r0, Ar0, . . . , A
k−1r0} =: Kk(A, r0),

where Kk(A, r0) is known as the Krylov subspace of order k for the matrix A and the generating vector r0.
Since u0 = 0, it holds that r0 = b = Au? and thus

Kk(A, r0) = Span{b, Ab, . . . , Ak−1b}.

We will write Kk for short.
For an arbitrary x ∈ Kk, there exists {αi}k−1

i=0 such that x =
∑k−1
i=0 αiA

ib. Let f(t) :=
∑k−1
i=0 αit

i. It
follows that

‖u− u?‖2A = (f(A)Au? − u?)>A(f(A)Au? − u?) = u>? g(A)Ag(A)u?,

where g(t) := 1− f(t)t and A = A> has been used. Since A is positive semi-definite, it admits an eigenvalue
decomposition A = QΛQ>. It then follows from Ak = QΛkQ that

u>? g(A)Ag(A)u? = u>? Qg(Λ)Λg(Λ)Q>u?.

Denote y := Q>u? and Λ = Diag{λj}. Then we get

u>? Qg(Λ)Λg(Λ)Q>u? =

p∑
j=1

λjg(λj)
2y2
j .

Note that

‖u− u?‖2A = u>Au− 2u>Au? + u>? Au? = u>Au− 2u>b+ u>? Au?

According to Chen (2005, Equation 3.31),

‖uk − u?‖2A = min
x∈Span{p0,...,pk−1}

‖x− u?‖2A = min
g∈Gk

p∑
j=1

λjg(λj)
2y2
j ,

where Gk is the collection of polynomials of degree k that take value 1 at 0. Define

C(Λ) := min
g∈Gk

max
j∈[p]
|g(λj)|.

Using properties of Chebyshev polynomials, we obtain (e.g., Chen, 2005, Equation 3.46)

C(Λ) ≤ 2

(√
κ− 1√
κ+ 1

)k
,

where κ := λmax(A)/λmin(A). As a result,

‖uk − u?‖2A ≤ min
g∈Gk

p∑
j=1

λj max
j′∈[p]

g(λj′)
2y2
j = C(Λ)2

p∑
j=1

λjy
2
j = C(Λ)2y>Λy = C(Λ)2u>? Au?

≤ 4

(√
κ− 1√
κ+ 1

)2k

‖u0 − u?‖2A.

We use the bound κ ≤ κn to complete the proof.
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Corollary 14 (Total Computational Cost; Conjugate Gradient Method). Fix ε > 0. Consider the setting of
Theorem 1, and let G denote the high probability event under which its conclusions hold. Choose a sample size
n such that

n = CK1,K2,σH

R2p2
?

µ?ε
poly log

p

δ
.

Then, under G, the number Ncg of gradient and Hessian-vector oracle calls required to obtain a point În(z)

using the conjugate gradient method initialized at u0 = 0 such that ‖În(z)− I(z)‖2H? ≤ ε is bounded by

Ncg ≤ CK1,K2,σH

R2p2
?κ

3/2
?

Lε
log

(
‖I(z)‖2H?

ε
+ 1

)
poly log

p

δ
.

Proof. We combine the total error bound of Proposition 12 with the computational bound of Proposition 13.
Under G, note that the choice of the sample size n implies that the statistical error is bounded from Theorem 1
by

‖In(z)− I(z)‖2H? ≤
ε

2
.

Let tcg be the number of conjugate gradient iterations t such that the ‖În(z)− In(z)‖2Hn(θn) ≤ ε/16 as
given in Proposition 13. By Proposition 12, the total error is then ε and the total number of gradient and
Hessian-vector product oracle calls in N = tcgn, since each iteration requires a full pass over the data. To
complete the proof, we invoke Proposition 11 to bound the initial gap ‖u0 − u?‖2Hn(θn) = ‖In(z)‖Hn(θn) and
the condition number κn in terms of their respective population quantities.

Remark 15. When the spectrum of H? decays as O(i−β) for β ∈ [0, 1), we can obtain a more refined analysis
using the K-condition number. In the following, we assume that

n ≥ CK1,K2,σH (p2 + ε−1)R2 p?
µ?

poly log
p

δ
.

Following the proof of Proposition 13, it holds that

‖ut − u?‖2A ≤ C2(Λ)‖u0 − u?‖2A.

According to Axelsson and Kaporin (2000, Theorem 4.3), we have

C(Λ) ≤
(

3 logKn

t

)t/2
.

Using the event G4 from the proof of Theorem 1, we know that (1 − p−1)H? � Hn(θn) � (1 + p−1)H?. As
a result, we have Kn ≤ (1 + p−1)p(1 − p−1)−pK? ≤ CK?. Moreover, it follows from Theorem 1 that the
statistical error is controlled by ε/2.

We then control the computational error. Since λi ∼ i−β, we have TrH? ∼ p1−β/(1− β) and detH? ∼
(p!)−β. Consequently, it follows from Stirling’s approximation that K? ∼ (2πp)β/2e−βp(1 − β)−p. If t >

6 log (CK?) > 6 logKn, then we only need t > C log

(
1 +

‖I(z)‖2H?
ε

)
to achieve ε/2 computation error.

Therefore, we have

tcg ≥ 6 log
[
C(2πp)β/2e−βp(1− β)−p

]
+ C log

(
1 +
‖I(z)‖2H?

ε

)
,

and thus

Ncg = CK1,K2,σH (p2 + ε−1)R2 p?
µ?

{
6 log

[
C(2πp)β/2e−βp(1− β)−p

]
+ C log

(
1 +
‖I(z)‖2H?

ε

)}
poly log

p

δ
.
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E.3 Stochastic Gradient Descent
We consider using SGD to solve the linear system Hn(θn)u +∇`(z, θn) = 0. We do so by minimizing the
quadratic gn from (9):

gn(u) =
1

2
〈u,Hn(θn)u〉+ 〈∇`(z, θn), u〉 .

We run SGD by sampling an index it uniformly at random to update

ut+1 = ut − γ
(
H(Zit , θn)ut + `(z, θn)

)
.

The bounds depend on the following quantities:
(a) Let µn = λmin(Hn(θn)) be the minimal eigenvalue of Hn(θn).
(b) Define the matrix Wn =

(
Hn(θn)−1/2H(Zi, θn)Hn(θn)−1/2 − Ip

)
and

Σn =
1

n

n∑
i=1

WnHn(θn)1/2In(z)In(z)>Hn(θn)1/2Wn .

(c) Define the noise term
σ2
n := TrΣn + p‖Σn‖2 .

We have the following convergence bound for SGD (Jain et al., 2017b,a); cf. Appendix H.4 for details.

Lemma 16. The sequence (ūt) produced by tail-averaged SGD on the function gn(u) from (9) with a learning
rate of γ = (2L)−1 satisfies

E‖ūt − u?‖2Hn(θn) ≤ C
(
κn ‖u0 − u?‖2Hn(θn) exp

(
− t

4κn

)
+
σ2
n

t

)
.

Therefore, it returns a point ūt satisfying E‖ūt − u?‖2Hn(θn)) ≤ ε after t ≥ tsgd steps where

tsgd ≤ C
(
σ2
n

ε
+ κn log

(
κn‖u0 − u?‖2Hn(θn)

ε

))
,

where κn = L/µn is the condition number.

Total error bound. We give a total error bound under a stronger assumption on the normalized Hessian.
We strengthen the matrix Bernstein condition on the normalized Hessian into a spectral norm bound in a
neighborhood around θ? as formalized below.

Assumption 3’ (Bounded Hessian). The normalized Hessian is bounded in a neighborhood of θ?, i.e., there
exist M2 > 1 and ρ > 0 such that ‖H(z, θ)‖H−1

?
≤M2 for all z ∈ Z and ‖θ − θ?‖H? ≤ ρ.

This gives the following total error bound.

Proposition 17 (Total Error bound for SGD). Fix ε > 0. Consider the setting of Theorem 1 and let G
denote the event under which its conclusions hold. Suppose also that Assumption 3’ is true. With probability
at least 1− δ, the total error of În(z) obtained from t iterations of tail-averaged SGD is bounded as

E
[
‖În(z)− I(z)‖2H?

∣∣∣G] ≤ CK1,M2,σH (A1 +A2 +A3) poly log
p

δ
,

where

A1 =
R2p2

?

nµ?

(
1 + κ? exp

(
− t

16κ?

))
A2 = κ?‖I(z)‖2H? exp

(
− t

16κ?

)
A3 =

p?p
2

nt
+
R2p?p

2

µ?nt
+
p?
t
‖I(z)‖2H?
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whenever

n ≥ CK1,M2,σH p?

(
R2

µ?
+

1

ρ

)
log

p

δ
.

Before proving Proposition 17, we state the final total error bound in terms of the number of calls to a
Hessian-vector product oracle. To this end, define the coefficient σ2

? as

σ2
? := p2

?

(
R2

µ?
+ 1

)
+ p2‖I(z)‖2H? . (24)

Corollary 18 (Total Oracle Complexity for SGD). Consider the setting of Proposition 17. If we choose

n ≥ max

{
1,
R2

µ?

}
p2
?

ε
poly log

p

δ
and t ≥

(
p2‖I(z)‖2H?

ε
+ κ? log

(
κ?‖I(z)‖2H?

ε

))
poly log

p

δ
,

we have E
[
‖În(z)− I(z)‖2H?

∣∣∣G] ≤ ε. Then, the minimal total number of calls to a Hessian-vector product
oracle is

Nsgd ≤
(
σ2
?

ε
+ κ? log

(
κ?‖I(z)‖2H?

ε

))
poly log

p

δ
.

Proof. We use the shorthand ∆? := ‖I(z)‖2H? . We have that the total error is bounded as E
[
‖În(z)− I(z)‖2H?

∣∣∣G] ≤
6ε if the each of the terms of Proposition 17 is bounded by ε. These conditions are (ignoring constants and
the poly log(p/δ) term):

(a) R2p2
?/(nµ?) ≤ ε holds, or the stronger condition n ≥ max{1, R2/µ?}p2

?/ε holds.

(b) R2p2
?κ?/(nµ) exp(−t/(16κ?)) ≤ ε holds.

(c) ∆?κ? exp(−t/(16κ?)) or t ≥ 16κ? log(∆?κ?/ε) holds.

(d) p2p?/(nt) ≤ ε or that nt ≥ p2p?/ε.

(e) R2p?p
2/(µ?nt) ≤ ε or that nt ≥ R2p?p

2

µ?ε
.

(f) p2∆?/t ≤ ε or that t ≥ p2∆?/ε.

Under the assumption that ε < ∆? (or else there is nothing to estimate), the conditions (a) and (f) together
imply that the conditions (d) and (e) hold. Similarly, the conditions (a) and (c) together imply that condition
(b) holds. Therefore, it suffices to have conditions (a), (c), and (f), which us the first claim. For the second
one, note that the total number of Hessian-vector product calls is max{n, t} ≤ n+ t.

We now prove Proposition 17.

Proof of Proposition 17. We denote ∆? := ‖I(z)‖2H? and ∆n := ‖In(z)‖2Hn(θn) in this proof. Under the event
G, we have

‖In(z)− I(z)‖2H? ≤
R2p2

?

nµ?
poly log

p

δ
=: En . (25)

The computational bound Lemma 16 implies that

E
[
‖În(z)− In(z)‖2Hn(θn)

∣∣∣Z1:n

]
≤ κn∆n exp

(
− t

4κn

)
+
σ2
n

t
.

Invoking Proposition 11 and Lemma 19 (which requires n large enough as assumed), we can write

E
[
‖În(z)− In(z)‖2H?

∣∣∣G] ≤ Cκ?∆? exp

(
− t

16κ?

)
+ CK1,M2

p2

t

(
p?
n

+
∆?R

2p?
µ?n

+ ∆?

)
log

p

δ
. (26)

We invoke the triangle ienquality to complete the proof.
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The total error bounds rely on the following upper bound of the noise term σ2
n in terms of the

population quantities. Recall that, for A, J ∈ Rp×p with J being p.s.d., the weighted spectral norm
‖A‖J :=

∥∥J1/2AJ1/2
∥∥

2
.

Lemma 19. Under Assumptions 1, 2, 3’, we have, with probability at least 1− δ,

σ2
n ≤ CK1,M2

· p2

[
p?
n

log
e

δ
+
‖I(z)‖2H?

n

[
R2p?
µ?

log
e

δ
+ log

2p

δ

]
+ ‖I(z)‖2H?

]
whenever n ≥ CK1,M2

(
p?(R

2/µ? + 1/ρ) log (e/δ) + log (2p/δ)
)
.

Proof. Let Hn(Z) := Hn(θn)−1/2H(Z, θn)Hn(θn)−1/2. Then

Tr(Σn) = Tr

{
1

n

n∑
i=1

[Hn(Zi)− Ip]Hn(θn)1/2In(z)In(z)>Hn(θn)1/2[Hn(Zi)− Ip]

}

= Tr

{
1

n

n∑
i=1

[Hn(Zi)− Ip]
2Hn(θn)1/2In(z)In(z)>Hn(θn)1/2

}

= In(z)>Hn(θn)1/2

{
1

n

n∑
i=1

[Hn(Zi)− Ip]
2

}
Hn(θn)1/2In(z).

Note that n−1
∑n
i=1Hn(Zi) = Ip. It follows that

Tr(Σn) = In(z)>Hn(θn)1/2

[
1

n

n∑
i=1

Hn(Zi)
2

]
Hn(θn)1/2In(z)− ‖In(z)‖2Hn(θn)

= In(z)>Hn(θn)1/2

[
1

n

n∑
i=1

H(Zi, θn)Hn(θn)−1H(Zi, θn)

]
Hn(θn)1/2In(z)− ‖In(z)‖2Hn(θn)

= In(z)>Hn(θn)1/2Hn(θn)−1/2H
1/2
? AnH1/2

? Hn(θn)−1/2Hn(θn)1/2In(z)− ‖In(z)‖2Hn(θn)

≤
[
‖An‖2

∥∥∥Hn(θn)−1/2H?Hn(θn)−1/2
∥∥∥

2
− 1
]
‖In(z)‖2Hn(θn) , (27)

where

An :=
1

n

n∑
i=1

H
−1/2
? H(Zi, θn)H

−1/2
? H

1/2
? Hn(θn)−1H

1/2
? H

−1/2
? H(Zi, θn)H

−1/2
? .

The term
∥∥Hn(θn)−1/2H?Hn(θn)−1/2

∥∥
2
has been controlled in Proposition 10. Since

‖In(z)‖2Hn(θn) ≤ 2 ‖In(z)− I(z)‖2Hn(θn) + 2 ‖I(z)‖2Hn(θn)

it can be controlled using Theorem 1. It remains to control ‖An‖2. Note that

‖An‖2 ≤ Tr(An) = Tr

{[
1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2]
H

1/2
? Hn(θn)−1H

1/2
?

}

≤ p
∥∥∥∥∥
[

1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2]
H

1/2
? Hn(θn)−1H

1/2
?

∥∥∥∥∥
2

≤ p
∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2∥∥∥∥∥
2

∥∥∥H1/2
? Hn(θn)−1H

1/2
?

∥∥∥
2
. (28)

Again, the term
∥∥∥H1/2

? Hn(θn)−1H
1/2
?

∥∥∥
2
can be controlled via Proposition 10. As for the term∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2∥∥∥∥∥
2

, (29)
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it can be bounded by 1) using the Lipschitzness of the Hessian to replace θn by θ?, and 2) using the Matrix
Bernstein inequality.

Let us prove the result rigorously. Define

rn :=

√
CK2

1 log (8e/δ)
p?
n

and tn :=
CM2

−1 +
√

1 + Cn/ log (16p/δ)
.

Define the following events

G1 :=
{
‖θn − θ?‖2H? ≤ r

2
n

}
G2 :=

{
‖H1/2

? Hn(θn)−1H
1/2
? − Ip‖2 ≤

Rrn/
√
µ? + tn

1−Rrn/√µ? − tn

}
G3 :=

{
‖In(z)− I(z)‖2H? ≤

[
M2rn + (‖S(z, θ?)‖H−1

?
+M2rn)

Rrn/
√
µ? + tn

1−Rrn/√µ? − tn

]2
}

G4 :=

{∥∥∥∥∥ 1

n

n∑
i=1

[H
−1/2
? H(Zi, θ?)H

−1/2
? ]2 − E

{
[H
−1/2
? H(Z, θ?)H

−1/2
? ]2

}∥∥∥∥∥
2

≤ 1

2

}
.

Let Q := [H
−1/2
? H(z, θ?)H

−1/2
? ]2 − E

{
[H
−1/2
? H(Z, θ?)H

−1/2
? ]2

}
. Under Assumption 3’, it holds that

∥∥∥[H
−1/2
? H(Z, θ?)H

−1/2
? ]2

∥∥∥
2
≤
∥∥∥H−1/2

? H(Z, θ?)H
−1/2
?

∥∥∥2

2
≤M2

2 .

As a result, it holds that ‖Q‖2 ≤ 2M2
2 . Moreover, we have∥∥E[QQ>]

∥∥
2
≤ E

∥∥QQ>∥∥
2
≤ E ‖Q‖22 ≤ 4M4

2

and, similarly,
∥∥E[Q]E[Q>]

∥∥
2
≤ 4M4

2 . Consequently, ‖V(Q)‖2 ≤ 8M4
2 . This, together with Lemma 36

implies that Q satisfies a matrix Bernstein condition with K2 = 2M2
2 and σ2

H = 8M4
2 . Analogously,

Assumption 3 holds true with K2 = 2M2 and σ2
H = 4M2

2 . In the following of the proof, we assume
n ≥ C max{M4

2 log(2p/δ),K2
1 log(e/δ)p?(R

2/µ? + 1/ρ)}. This implies that ‖θn − θ?‖H? < ρ on the event G1.
Furthermore, we have Rrn/

√
µ? ≤ 1/6 and tn ≤ 1/6, and thus

Rrn/
√
µ? + tn

1−Rrn/√µ? − tn
≤ 1/2. (30)

Step 1. Prove the bound on the event G1G2G3G4. By the event G2 and (30), it holds that

‖H1/2
? Hn(θn)−1H

1/2
? ‖2, ‖Hn(θn)−1/2H?Hn(θn)−1/2‖2 ≤

3

2
, (31)

and Hn(θn) � 2H?. It follows that

‖In(z)− I(z)‖2Hn(θn) ≤ 2‖In(z)− I(z)‖2H? and ‖I(z)‖2Hn(θn) ≤ 2‖I(z)‖2H? .

As a result,

‖In(z)‖2Hn(θn) ≤ 2 ‖In(z)− I(z)‖2Hn(θn) + 2 ‖I(z)‖2Hn(θn) ≤ 4‖In(z)− I(z)‖2H? + 4‖I(z)‖2H? . (32)

By the event G3 and (30), it holds that

‖In(z)− I(z)‖2H? ≤
9

2
M2

2 r
2
n + 2‖S(z, θ?)‖2H−1

?

(
Rrn/

√
µ? + tn

1−Rrn/√µ? − tn

)2

. (33)
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On the event G4, we get∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θ?)H

−1/2
?

)2∥∥∥∥∥
2

≤ 1

2
+
∥∥∥E{[H

−1/2
? H(Z, θ?)H

−1/2
? ]2

}∥∥∥
2
≤ 1

2
+M2

2 .

Furthermore, by Lemma 30, it holds that

‖H(Zi, θn)−H(Zi, θ?)‖H−1
?
≤ ReR‖θn−θ?‖2‖H(Zi, θ?)‖H−1

?
‖θn − θ?‖2.

Note that ‖H(z, θ?)‖H−1
?
≤ M2 and R‖θn − θ?‖2 ≤ R‖θn − θ?‖H?/

√
µ? ≤ 1/2 by the event G1. It follows

that ∥∥∥H−1/2
? H(Zi, θn)H

−1/2
? −H−1/2

? H(Zi, θ?)H
−1/2
?

∥∥∥
2

= ‖H(Zi, θn)−H(Zi, θ?)‖H−1
?
≤M2.

Since ‖A2 −B2‖2 ≤ ‖A(A−B)‖2 − ‖(A−B)B‖2 ≤ (‖A‖2 + ‖B‖2)‖A−B‖2, we get∥∥∥(H−1/2
? H(Zi, θn)H

−1/2
?

)2 − (H−1/2
? H(Zi, θ?)H

−1/2
?

)2∥∥∥
2
≤ 2M2

2 ,

and thus ∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θ?)H

−1/2
?

)2∥∥∥∥∥
2

+∥∥∥∥∥ 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θn)H

−1/2
?

)2 − 1

n

n∑
i=1

(
H
−1/2
? H(Zi, θ?)H

−1/2
?

)2∥∥∥∥∥
2

≤ 4M2
2 . (34)

Putting (27), (28), (31), (32), (33), and (34) together, we obtain

Tr(Σn) ≤ (CpM2
2 − 1)

[
18M2

2 r
2
n + 8‖S(z, θ?)‖2H−1

?

(
Rrn/

√
µ? + tn

1−Rrn/√µ? − tn

)2

+ 4‖I(z)‖2H?

]
.

Now the claim follows from ‖Σn‖2 ≤ Tr(Σn) and I(z) = H−1
? S(z, θ?).

Step 2. Control the probability of G1G2G3G4. According to Propositions 9 and 10, we have P(G1) ≥
1− δ/4 and P(G2) ≥ 1− δ/4. Following a similar proof as Theorem 1 and noticing that ‖H(z, θ)‖H−1

?
≤M2

for all ‖θ − θ?‖H? ≤ ρ, we obtain P(G3) ≥ 1− δ/4. Finally, invoking the matrix Bernstein inequality yields
P(G4) ≥ 1− δ/4. Hence, we have P(G1G2G3G4) ≥ 1− δ.

E.4 Variance Reduction: SVRG and Accelerated SVRG
We minimize the quadratic gn from (9) with SVRG (Johnson and Zhang, 2013) or its accelerated variant (Lin
et al., 2018; Allen-Zhu, 2017). Let u? = arg minu f(u) denote the minimizer of fn(u). A Taylor expansion
gives us the expression

f(u)− f(u?) =
1

2
‖u− u?‖2Hn(θn) .

Combining this fact with standard convergence bounds of SVRG and accelerated SVRG (cf. Appendix H.4
for a review) give us the following computational bound.

Theorem 20. Suppose that the loss function ` is convex and L-smooth, i.e., 0 � ∇2`(·, z) � LId for all
z ∈ Z. Further, assume that fn is µn strongly convex, i.e., Hn(θn) � µnId. Then, SVRG starting at u0 ∈ Rd

returns an iterate ut satisfying E
[
‖ut − u?‖2Hn(θn)

∣∣∣Z1:n

]
≤ ε after tsvrg steps where

tsvrg ≤ C(n+ κn) log

(
κn‖u0 − u?‖2Hn(θn)

ε

)
,
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where κn = L/µn and C is an absolute constant. Accelerated SVRG satisfies the same condition after tasvrg

steps where steps where

tasvrg ≤ C (n+
√
nκn) log

(
κn‖u0 − u?‖2Hn(θn)

ε

)
.

This gives us the following full error bound.

Corollary 21 (Total Computational Cost; Variance Reduction). Fix ε > 0. Consider the setting of
Theorem 1, and let G denote the high probability event under which its conclusions hold. Choose a sample size
n such that

n = CK1,K2,σH

R2p2
?

µ?ε
poly log

p

δ
.

Then, the number Nsvrg of gradient and Hessian-vector oracle calls required to obtain a point În(z) using
SVRG initialized at u0 = 0 such that E

[
‖În(z)− I(z)‖2H? |G

]
≤ ε is bounded by

Nsvrg ≤ CK1,K2,σH κ?

(
1 +

R2p2
?

Lε

)
log

(
κ?‖I(z)‖2H?

ε
+ κ?

)
poly log

p

δ
.

The corresponding number Nasvrg for accelerated SVRG is

Nasvrg ≤ CK1,K2,σH κ?

(√
R2p2

?

Lε
+
R2p2

?

Lε

)
log

(
κ?‖I(z)‖2H?

ε
+ κ?

)
poly log

p

δ
.

Proof. The proof is identical to that of Corollary 14 with Theorem 20 invoked instead of Proposition 13.

E.5 Low Rank Approximation
Consider the eigenvalue decomposition Hn(θn) = QΛQ>, where Λ = (λ1, · · · , λp) contains the eigenvalues of
Hn(θn) in non-increasing order. Recall that this method relies on approximating Hn(θn) with its low-rank
approximation QΛkQ

> where Λk = Diag(λ1, · · · , λk, 0, · · · , 0) to approximate the product with a vector v as
Hn(θn)−1v = QΛ−1Q>v ≈ QΛ+

k Q
>v , where Λ+

k = Diag(λ−1
1 , · · · , λ−1

k , 0, · · · , 0) is the pseudoinverse of Λ.
The rank-k approximation of v = Hn(θn)−1u is given by vk = QDiag(λ−1

1 , · · · , λ−1
k , 0 · · · , 0)Q>u.

Consequently, this section gives bounds for the method of Schioppa et al. (2022), who compute the
low-rank approximation of the Hessian using the Lanczos/Arnoldi iterations (Lanczos, 1950; Arnoldi, 1951).

The computational bound we obtain depends on the low rank k.

Proposition 22. Let λ1 ≥ · · · ≥ λd denote the eigenvalues of Hn(θn). Then, the low-rank estimate În,k(z)
of In(z) satisfies ∥∥∥În,k(z)− In(z)

∥∥∥2

Hn(θn)
≤ ‖In(z)‖22

p∑
i=k+1

λi .

We have the following two regimes depending on the decay of eigenvalues λi(Hn(θn)):
• If λi(Hn(θn)) ≤ L i−β for some β > 1, we have

∥∥∥În,k(z)− In(z)
∥∥∥2

Hn(θn)
≤ Cβ

κn‖In(z)‖2Hn(θn)

kβ−1
.

• If λi(Hn(θn)) ≤ L exp(−ν(k − 1)) for some ν > 0, we have∥∥∥În,k(z)− In(z)
∥∥∥2

Hn(θn)
≤ Cνκn exp(−νk)‖In(z)‖2Hn(θn) .
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Proof. Denote v = ∇`(θn, z) and u? = −Hn(θn)−1v. Let q1, · · · , qp denote the columns of Q. Using
Q>Q = Ip, we get ∥∥∥În,k(z)− In(z)

∥∥∥2

Hn(θn)
= v>Q(Λ−1 − Λ+

k )Λ(Λ−1 − Λ+
k )Q>v

= u>? QΛ(Λ−1 − Λ+
k )Λ(Λ−1 − Λ+

k )Qu?

=

p∑
i=k+1

λi〈qi, u〉22 ≤
p∑

i=k+1

λi‖u?‖22 ,

where the last inequality follows from the Cauchy-Schwarz inequality and ‖qi‖2 = 1. For the second part of
the proof, we use the bound ‖u‖22 ≤ ‖u‖

2
A/λmin(A) together with

p∑
i=k+1

i−β ≤
∫ ∞
k

x−βdx =
k−(β−1)

β − 1
, and

p∑
i=k+1

exp(−ν(i− 1)) ≤ exp(−νk)

1− exp(−ν)
.

Corollary 23 (Total Computational Cost; Low-Rank Approximation). Fix ε > 0. Consider the setting of
Theorem 1, and let G denote the high probability event under its conclusions hold. Choose a sample size

n ≥ CK1,K2,σH ,R
p2
?

µ?ε
poly log

p

δ
.

Then, under G, the rank-k approximation În,k(z) satisfies ‖În,k(z)− I(z)‖2H? ≤ ε for all k no smaller than

k? = min

{
k :

p∑
i=k+1

λi(H?) ‖In(z)‖22 ≤ ε/32

}
.

We have the following two regimes depending on the decay of eigenvalues λi(H?):
• If λi(H?) ≤ L i−β for some β > 1, we have

k? ≤ Cβ
(
κ?‖I(z)‖2H?

ε
+ κ?

) 1
β−1

.

• If λi(H?) ≤ L exp(−ν(k − 1)) for some ν > 0, we have

k? ≤
1

ν
log

(
κ?‖I(z)‖2H?

ε
+ κ?

)
.

Proof. The proof follows from combining Proposition 22 with Proposition 12.

F Most Influential Subset: Statistical Error Bound
Our goal in this section is to prove Theorem 4.

F.1 Setup
Throughout, we assume that the Hessian ∇2

θF (θ) of the population is invertible for all θ ∈ Θ. For a
continuously differentiable test function h such as the loss of a test example h(θ) = `(ztest, θ), recall that we
define the population influence as

Iα(h) = sup
Q�P

{
−∇θh(θ?)

>∇2
θH
−1
? EZ∼Q[∇θ`(Z, θ?)] :

dQ

dP
≤ 1

1− α

}
. (35)

We characterize the convergence of In,α(h) towards Iα(h) via finite sample bounds. Recall that, for
A, J ∈ Rp×p with J being p.s.d., the weighted spectral norm ‖A‖J :=

∥∥J1/2AJ1/2
∥∥

2
.

We retain Assumption 1 but strengthen the other assumptions.
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Assumption 2’ (Bounded Gradient). The normalized gradient is bounded in a neighborhood of θ?, i.e., there
exist M1, ρ > 0 such that ‖∇`(z, θ)‖H−1

?
≤M1 for all z ∈ Z and ‖θ − θ?‖H? ≤ ρ.

If the normalized gradient H−1/2
? ∇`(z, θ) is bounded, then it is also sub-Gaussian, as required by

Assumption 2. In addition, we make this assumption in a neighborhood of θ?. For the next assumption, we
strengthen the Bernstein condition on the normalized Hessian into a spectral norm bound in a neighborhood
around θ?.

Assumption 3’ (Bounded Hessian). The normalized Hessian is bounded in a neighborhood of θ?, i.e., there
exist M2, ρ > 0 such that ‖H(z, θ)‖H−1

?
≤M2 for all z ∈ Z and ‖θ − θ?‖H? ≤ ρ.

Finally, we also require that the gradient and Hessian of the test function h are bounded.

Assumption 4 (Bounded Test Function). There exist M ′1,M ′2, ρ > 0 such that ‖∇h(θ)‖H−1
?
≤ M ′1 and∥∥∇2h(θ)

∥∥
H−1
?
≤M ′2 for all ‖θ − θ?‖H? ≤ ρ.

F.2 Proof of the Statistical Bound of Theorem 4
Recall that the maximum subset influence is defined as

Iα,n(h) = max
w∈Wα

n∑
i=1

wivi, where vi = −
〈
∇h(θn), Hn(θn)−1∇`(Zi, θn)

〉
.

Here Hn(θn)−1∇`(Zi, θn) = −In(Zi). Hence, the maximum subset influence can be equivalently defined as

Iα,n(h) = max
w∈Wα

n∑
i=1

wi〈∇h(θn), In(Zi)〉.

We state and prove the precise version of Theorem 4 below. Note that we give a bound in terms of
|Iα,n(h)− Iα(h)| while the main paper gave a bound in terms of the square.

Theorem 4. Under Assumptions 1, 2’, 3’, and 4, it holds that, with probability at least 1− δ,

|Iα,n(h)− Iα(h)| ≤
CM1,M2,M ′1,M

′
2

(1− α)
√
n

(
R

√
p?
µ?

log
(e
δ

)
+

√
log

(
2p

δ

)
+

√
log
(n
δ

))
.

whenever n ≥ CM1,M2

((
R2

µ?
+ 1

ρ

)
p? log

(
e
δ

)
+ log

(
2p
δ

))
.

The proof centrally relies on the following duality property of the superquantile.

Lemma 24 (Rockafellar and Uryasev (2000)). For any integrable random variable Z ∼ P and any α ∈ (0, 1),
the superquantile satisfies the equivalent expressions

Sα(Z) = inf
η∈R

{
η +

1

1− αE(Z − η)+

}
= sup
Q�P

{
EZ∼Q[Z] :

dQ

dP
≤ 1

1− α

}
.

We now prove Theorem 4.

Proof of Theorem 4. Define the shorthand for the per-point influence as

ψn(z, θ) := ∇h(θ)>Hn(θ)−1∇`(z, θ) and ψ(z, θ) := ∇h(θ)>H(θ)−1∇`(z, θ).
Motivated by the alternate expression for the superquantile in Lemma 24, we will define

ϕn,n(θ, η) := η +
1

(1− α)n

n∑
i=1

(−ψn(Zi, θ)− η)+ ,

ϕn(θ, η) := η +
1

(1− α)n

n∑
i=1

(−ψ(Zi, θ)− η)+ ,

ϕ(θ, η) := η +
1

1− α EZ∼P (−ψ(Z, θ)− η)+ .
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According to Lemma 24, it holds that

|Iα,n(h)− Iα(h)| =
∣∣∣∣ inf
η∈R

ϕn,n(θn, η)− inf
η∈R

ϕ(θ?, η)

∣∣∣∣ ,
By the triangle inequality,∣∣∣∣ inf

η∈R
ϕn,n(θn, η)− inf

η∈R
ϕ(θ?, η)

∣∣∣∣ ≤ ∣∣∣∣ inf
η∈R

ϕn,n(θn, η)− inf
η∈R

ϕn(θn, η)

∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣ inf
η∈R

ϕn(θn, η)− inf
η∈R

ϕ(θ?, η)

∣∣∣∣︸ ︷︷ ︸
B

. (36)

As before, we prove the bound on some events and control the probability of these events. Before we start,
we make two observations. First, according to Lemma 33 and Assumption 2’, the sub-Gaussian gradient
assumption Assumption 2 holds true with K1 = CM1. Second, let Q := H

−1/2
? H(Z, θ?)H

−1/2
? − Ip. Under

Assumption 3’, it holds that ‖Q‖2 = ‖H(Z, θ?)−H?‖H−1
?
≤ 1 +M2 ≤ CM2. Moreover, we have∥∥E[QQ>]

∥∥
2
≤ E

∥∥QQ>∥∥
2
≤ E ‖Q‖22 ≤ C2M2

2

and, similarly,
∥∥E[Q]E[Q>]

∥∥
2
≤ C2M2

2 . Consequently, ‖V(Q)‖2 ≤ 2C2M2
2 . This, together with Lemma 36,

implies that Assumption 3 holds true with K2 = M2 and σ2
H = 2C2M2

2 .
Fix ε > 0 and denote M := eM1M

′
1. Let Rε be an ε-net of [−M,M ]. It is clear that |Rε| ≤ M

ε + 1.
Denote

rn :=

√
CM2

1

p?
n

log (2e/δ) and tn :=
CM2

−1 +
√

1 + Cn/ log (4p/δ)
.

Define the following events

G1 :=

{
‖∇`n(θ?)‖2H−1

?
≤ 1

n
CM2

1 p? log(3e/δ)

}
G2 := {(1− tn)H? � Hn(θ?) � (1 + tn)H?}

G3 :=

{
|ϕn(θ?, η)− ϕ(θ?, η)| ≤ M

1− α

√
2 log (6 |Rε| /δ)

n
for all η ∈ Rε

}
.

In what follows, we assume that

n ≥ max

{
CM2

2 log(6p/δ), CM2
1 p?

(
R2

µ?
+

1

ρ

)
log(3e/δ)

}
. (37)

From the proof of Proposition 10, we know that tn ≤ 1/3,

‖θn − θ?‖2H? ≤ r
2
n =

1

n
CM2

1 p? log (3e/δ) on the event G1G2, (38)

and P(Gk) ≥ 1− δ/3 for k ∈ {1, 2}.
Step 1. Control A. Since (·)+ is 1-Lipschitz, we get

|ϕn,n(θn, η)− ϕn(θn, η)| ≤ 1

(1− α)n

n∑
i=1

|ψn(Zi, θn)− ψ(Zi, θn)|

≤ 1

(1− α)n

n∑
i=1

‖∇h(θn)‖H−1
?

∥∥Hn(θn)−1 −H(θn)−1
∥∥
H?
‖∇`(Zi, θn)‖H−1

?
, (39)

where the last inequality follows from the definition of matrix spectral norm. By (37) and (38), we have the
‖θn − θ?‖H? ≤ 1. It then follows from Assumptions 2’ and 4 that ‖∇`(Zi, θn)‖H−1

?
≤M1 and ‖∇h(θn)‖H−1

?
≤

M2. It remains to control
∥∥Hn(θn)−1 −H(θn)−1

∥∥
H?

. By the triangle inequality, we have∥∥Hn(θn)−1 −H(θn)−1
∥∥
H?
≤
∥∥Hn(θn)−1 −H−1

?

∥∥
H?

+
∥∥H(θn)−1 −H−1

?

∥∥
H?
.
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The first term above has been taken care of in Proposition 10:∥∥Hn(θn)−1 −H−1
?

∥∥
H?
≤ Rrn/

√
µ? + tn

1−Rrn/√µ? − tn
.

The second term can be controlled similarly:∥∥H(θn)−1 −H−1
?

∥∥
H?
≤ Rrn/

√
µ?

1−Rrn/√µ?
.

Putting all together, we obtain

A ≤ sup
η∈R
|ϕn,n(θn, η)− ϕn(θn, η)| ≤ M1M

′
1

(1− α)

(
Rrn/

√
µ? + tn

1−Rrn/√µ? − tn
+

Rrn/
√
µ?

1−Rrn/√µ?

)
. (40)

Step 2. Control B. On a high level, we first apply a covering number argument to restrict η to a finite
number of values. We then control the absolute difference |ϕn(θn, η)− ϕ(θ?, η)| on this finite subset.

Step 2.1. Restrict η to a compact subset. According to Assumptions 2’ and 4, it holds that, for any
‖θ − θ?‖H? ≤ 1,

|ψ(z, θ)| ≤M1M
′
1

∥∥H(θ)−1
∥∥
H?
≤M1M

′
1e
R‖θ−θ?‖2 ,

where the last inequality follows from Proposition 29. Recall that we have shown ‖θn − θ?‖H? ≤ 1 and
‖θn − θ?‖2 ≤ 1/R. It then follows that |ψ(z, θ)| ≤ eM1M

′
1 = M . Consequently, we have

ϕn(θn, η) =

{
η ≥ ϕn(θn,M) if η ≥M
η + 1

(1−α)n

∑n
i=1[ψ(Zi, θ)− η] ≥ ϕn(θn,−M) if η ≤ −M.

Therefore, it holds that infη∈R ϕn(θn, η) = inf |η|≤M ϕn(θn, η). Similarly, it can be shown that infη∈R ϕ(θ?, η) =
inf |η|≤M ϕ(θ?, η).

Step 2.2. Restrict η to a finite subset. By the triangle inequality, we have

|ϕn(θn, η)− ϕn(θn, η
′)| ≤ 1

(1− α)n

n∑
i=1

|(−ψ(Zi, θn)− η)+ − (−ψ(Zi, θn)− η′)+|+ |η − η′|

≤ 1

1− α |η − η
′|+ |η − η′| , (·)+ is 1-Lipschitz

=
2− α
1− α |η − η

′| .

For any η ∈ [−M,M ], we define π(η) to be the projection of η onto Rε, i.e., |η − π(η)| ≤ ε. As a results,

ϕn(θn, π(η)) ≤ ϕn(θn, η) +
2− α
1− αε,

which implies

inf
η∈[−M,M ]

ϕn(θn, η) ≤ inf
η∈Rε

ϕn(θn, η) ≤ inf
η∈[−M,M ]

ϕn(θn, η) +
2− α
1− αε.

Similarly,

inf
η∈[−M,M ]

ϕ(θ?, η) ≤ inf
η∈Rε

ϕ(θ?, η) ≤ inf
η∈[−M,M ]

ϕ(θ?, η) +
2− α
1− αε.

From these results we can further conclude that∣∣∣∣ inf
η∈[−M,M ]

ϕn(θn, η)− inf
η∈[−M,M ]

ϕ(θ?, η)

∣∣∣∣ ≤ ∣∣∣∣ inf
η∈Rε

ϕn(θn, η)− inf
η∈Rε

ϕ(θ?, η)

∣∣∣∣+
2− α
1− αε

≤ sup
η∈Rε

|ϕn(θn, η)− ϕ(θ?, η)|+ 2− α
1− αε.
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Therefore, using the results from Step 2.1, we obtain

B =

∣∣∣∣ inf
η∈[−M,M ]

ϕn(θn, η)− inf
η∈[−M,M ]

ϕ(θ?, η)

∣∣∣∣
≤ sup
η∈Rε

|ϕn(θn, η)− ϕn(θ?, η)|︸ ︷︷ ︸
B1

+ sup
η∈Rε

|ϕn(θ?, η)− ϕ(θ?, η)|︸ ︷︷ ︸
B2

+
2− α
1− αε. (41)

Step 2.3. Control B1. By the 1-Lipschitzness of (·)+, we have

|ϕn(θn, η)− ϕn(θ?, η)| ≤ 1

(1− α)n

n∑
i=1

|ψ(Zi, θn)− ψ(Zi, θ?)| .

It follows from the triangle inequality that

|ψ(Zi, θn)− ψ(Zi, θ?)| ≤ D1 +D2 +D3,

where

D1 :=
∣∣∇h(θn)>[H(θn)−1 −H−1

? ]∇`(Zi, θn)
∣∣

D2 :=
∣∣∇h(θn)>H−1

? [∇`(Zi, θn)−∇`(Zi, θ?)]
∣∣

D3 :=
∣∣[∇h(θn)−∇h(θ?)]

>H−1
? ∇`(Zi, θ?)

∣∣ .
Following the derivation of Step 1, it holds that

D1 ≤M1M
′
1

Rrn/
√
µ?

1−Rrn/√µ?
.

To control D2, we use the mean value theorem to write ∇`(Zi, θn) − ∇`(Zi, θ?) = ∇2`(Zi, θ̄)(θn − θ?) for
some θ̄ ∈ conv{θn, θ?}. As a result,

D2 ≤ ‖∇h(θn)‖H−1
?

∥∥∇2`(Zi, θ̄)
∥∥
H−1
?
‖θn − θ?‖H? ≤M2M

′
1rn,

where the last inequality follows from (38) and Assumptions 2’ and 4. Similarly, we can show that D3 ≤
M1M

′
2rn. Therefore,

B1 ≤
1

1− α

[
M1M

′
1

Rrn/
√
µ?

1−Rrn/√µ?
+M1M

′
2rn +M2M

′
1rn

]
. (42)

Step 2.4. Control B2. By the event G3, it holds that

B2 ≤
M

1− α

√
2 log (6 |Rε| /δ)

n
≤ M

1− α

√
2 log (12M/(δε))

n
(43)

since |Rε| ≤M/ε+ 1 ≤ 2M/ε. Setting ε = 1/
√
n and combining (36), (40), (41), (42), and (43) lead to, after

simplification,∣∣∣∣ inf
η∈R

ϕn,n(θn, η)− inf
η∈R

ϕ(θ?, η)

∣∣∣∣ ≤ CM1,M2,M ′1,M
′
2

(1− α)
√
n

(
R

√
p?
µ?

log
(e
δ

)
+

√
log

(
2p

δ

)
+

√
log
(n
δ

))

Step 2.5. Control P(G1G2G3). Recall from Step 2.1 that |ψ(z, θ?)| ≤M for all z ∈ Z. This yields, for
all η ∈ Rε,

0 ≤ (−ψ(z, θ?)− η)+ ≤M − η ≤ 2M.

Consequently, it follows from Hoeffding’s inequality that P(G3) ≥ 1−δ/3. Since P(Gk) ≥ 1−δ/3 for k ∈ {1, 2}
(Proposition 10), we obtain P(G1G2G3) ≥ 1− δ, which completes the proof.
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G Experimental Details
We conduct our experimentation on six datasets (two simulated, two small datasets from economics, and
two natural language datasets). Here, we provide full details of the experimentation used in this paper. We
start with the dataset and model details in Appendix G.1, hyperparameter choices in Appendix G.2, and
evaluation methodology in Appendix G.3.

G.1 Data and Models
G.1.1 Linear Regression Simulation

We simulate a linear model with orthogonal design which we solve using penalized ridge regression to
illustrate the theoretical influence function bound results in Theorem 1. Following (Avella-Medina, 2017),
we simulate a model yi = xTi θ + µi for varying sample sizes n ∈ [15, 10000]. Each xi is i.i.d. standard
normal variables and θ ∈ R9 is fixed ahead of time. We introduce contamination into the dataset with
µi = (1− bi)N (0, 1) + biN (0, 10) where bi ∼ Bernoulli(.1). All experimental results are the average of 100
simulations.

G.1.2 Logistic Regression Simulation

We simulate a simple logistic regression model to illustrate the theoretical influence function bound results in
Theorem 1. We simulate a model yi ∼ Binomial(pi), where pi =

(
1 + exp(−(x>i θ+µi))

)−1 for varying sample
sizes n ∈ [15, 1000]. Each xi is i.i.d. standard normal variables and θ ∈ R9 is fixed ahead of time. Similar to
the linear regression case, we introduce contamination into the dataset with µi = (1− bi)N (0, 1) + biN (0, 10)
where bi ∼ Bernoulli(.1). All experimental results are the average of 100 simulations.

G.1.3 Oregon Medicaid Dataset

The dataset’s covariates contains economic and demographic factors, as well as whether or not treatment was
given. The goal is to predict various attributes of the health of a person.

Data. This dataset comes from the Oregon Medicaid study (Finkelstein et al., 2012). In 2008, Oregon
instituted a lottery system for choosing low-income adult resident to enroll in the Medicaid program. Due to
the nature of the lottery, it simulates a randomized controlled design study. A year later, a comprehensive
survey was conducted on both the treatment group (those who had won the lottery) and the control group
(those who did not win the lottery). We analyzed the effects of the treatment (L) on two different health
outcomes: overall health indicated by a binary self-reported measure of positive (not fair, good, very good, or
excellent) or negative (poor), and the number days with good physical or mental health in the past 30 days.
After removing all datapoints without entries for each response variable we used n = 22517 for the overall
health indicator model and n = 20902 for the number of days of good health model.

Models. We use ordinary least squares to solve a linear system where outcomes per individual i in household
h is denoted by yih. Since all individuals in a household chosen by the lottery can apply for Medicaid, the
variable Lh is equal to one if household h won the Medicaid lottery and zero otherwise. Lastly, we use a set
of demographic and economic covariates xi (shown in the Table 4). Using these, we estimate the following
model for each response variable yih using the model:

yih = θ0 + θ1Lh + θ2xi + εih .

Therefore, the covariates for each person are xih = (1, xi, Lh), where εih is assumed to be zero mean Gaussian
noise.

We ran each model with increasing sample size; for the overall health indicator model (binary classification
task) we used n = 49, 169, 575, 1954, 6634, and for the number of days of good health model (regression)
we used n = 49, 167, 559, 1869, 6251. The model that ran using all of the training data for each model was
considered the population results. All experimental results are the average of 5 repetitions.
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Variable Name Description
hhsize Household size including adults and children
wave_survey Weights used for each draw of the survey (out of 8 draws)
employ_hrs Average hours worked per week
edu Highest level of education completed
dia_dx* Diagnosed by a health professional with diabetes/sugar diabetes
ast_dx* Diagnosed by a health professional with asthma
hbp_dx* Diagnosed by a health professional with high blood pressure
emp_dx* Diagnosed by a health professional with COPD
dep_dx* Diagnosed by a health professional with depression or anxiety
ins_any Currently have any type of insurance
ins_ohp* Currently have OHP insurance
ins_private* Currently have private insurance
ins_other* Currently have other insurance
ins_months Number of months (in last 6 months) have had insurance

Table 4: Explanatory variables used in the Oregon Medicaid experimentation. The "Variable
Name" corresponds to the name used in the original analysis (Finkelstein et al., 2012), and then a brief
description is given. Variables with a (*) are binary.

G.1.4 Cash Transfer

Data. The cash transfer dataset comes from a study of the impact of Progresa, a social program in Mexico
that gives cash gifts to low income households (Angelucci and De Giorgi, 2009). Although, the effects on the
population receiving the cash transfers is important, Angelucci and De Giorgi (2009) argue that we must
also analyze the impact on the remaining members of the village that are not eligible in order to understand
the full impact of the program. However, due to concerns that the non-poor households might have a large
influence, the authors decided to limit the range of consumption outcomes for these households (less than
10,000). This results in robustness in the analysis for the poor household but sensitive results for the non-poor
households. For our analysis we will only use data from time period 8. After removing all entries with no
response variable (household consumption), we used the remaining n = 19180 datapoints.

Model. Following the analysis in Table 1 from (Angelucci and De Giorgi, 2009), we use total household
consumption Ci for individual i as the response variable, and a set of demographic and variables Xi as
covariates (shown in Table 5). Lastly, we use Poori and Nonpoori, which are interaction terms between the
treatment (getting cash transfer) and being a poor (non-poor) household, as our dependent variables of
interest. The model is as below,

Ci = θ0 + θ1Poori + θ2Nonpoori + θ3Xi (44)

The model was ran with increasing sample size n = 49, 164, 540, 1775, 5835. The model ran using all of the
training data for each model was considered the population results. All experimental results are the average
of 5 repetition.

G.1.5 Question-Answering with zsRE

Data. This is a question-answering task, in which the inputs xi are factual questions and the targets yi are
the answers. We used the Zero-Shot Relation Extraction (zsRE) dataset (Levy et al., 2017), with custom
test/train split provided by (De Cao et al., 2021). An example of this data can be found in Table 6. We
use a subsample of size 4499 for our experiments. We take the full dataset of n = 4499 as the population
and experiment with subsamples of size 49, 122, 182, 302, 743. The test dataset has size ntest = 200. All
experimental results are the average of 5 repetitions.
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Variable Name Description
hhhsex* Sex of head of household
hectareas Land size (hecta-acres)
vhhnum Number of household in the village
hhhage_cl Age of head of household
hhhspouse_cl* Head of household is married

Table 5: Explanatory variables used in the Cash Transfer experimentation. The "Variable Name"
corresponds to the name used in the original analysis (Angelucci and De Giorgi, 2009), and then a brief
description is given. Variables with a (*) are binary.

Task Input (xi) Output (yi)
zsRE What country did The Laughing Cow originate? France
WikiText The interchange is considered by Popular Mechanics

to be one of "The World’s 18 Strangest Roadways"
because of its height (as high as a 12-story building),
its 43 permanent bridges and other unusual...

design and construction features. In
2006, the American Public Works Asso-
ciation named the High Five Interchange

Table 6: Examples of the zsRE and WikiTextdataset. The zsRE data consists of an input question xi,
and target answer yi. The WikiText data has a paragraph as the input xi and the next 10 token continuation
as the output yi.

Model. For these experiments, we use a BART-base model, which was fine-tuned on the zsRE dataset
by De Cao et al. (2021). BART-base models have 12-layers, 768-hidden units, 16 heads, and 139M
parameters (Lewis et al., 2020). Each model was fine-tuned on a subset of the full data of size n ∈
{49, 122, 182, 302, 743, 4499}. Fine-tuning was done using stochastic gradient descent using the Adam opti-
mizer with a learning rate of γ = 10−6 for 20 iterations.

G.1.6 Wikitext

Data. The next task is an open-ended text continuation task. The prompt xi is a natural language text
sequence, while the generation yi is a 10 token continuation of the prompt. The dataset consists of random
passages from WikiText-103. We use a subsample of size 1903 for our experiments. We take the full dataset
of n = 1903 as the population and experiment with subsamples of size 40, 105, 275, 724, 1903. The test dataset
has size ntest = 200. All experimental results are the average of 5 repetitions. An example of this data can be
found in Table 6.

Model. We use a DistilGPT-2 model for this experiment which was finetuned on the WikiText-103
dataset (Merity et al., 2017). DistilGPT2 models have 6-layers, 768-hidden units, 12 heads, and 82M
parameters (Ma, 2021). Each model was fine-tuned on a subset of the full data of size n ∈ {40, 105, 275, 724]}.
Fine-tuning was done using stochastic gradient descent using Adam optimizer with a learning rate of γ = 10−6

for 20 iterations.

G.2 Hyperparameters
The hyperparameters for each experimentation are detailed below.

Linear regression simulation. The linear simulation was run with three penalization hyperparameter for
the Ridge regression, α = 10−3.

Oregon Medicaid dataet. This was run with a regularization parameter of 0.01.
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Approx. Method Hyperparameter zsRE WikiText
Max. Iterations 100 100

Conjugate Gradient Early stopping 0.01 0.01

Number of epochs 50 50

SGD Learning rate 5× 10−4 1× 10−2

Number of epochs 25 25

SVRG Learning rate 5× 10−4 1× 10−3

Number of iterations 30 30

Arnoldi Top_k eigen. 10 10

Number of iterations 30 50

Table 7: Hyperparameters for the language model experiements; zsRE and WikiTExt.

Cash Transfer dataset. This was run with a regularization parameter of 0.01.

zsRE. Each of methods require a different set of hyperparamters, we list these in Table 7. We note that we
use the same regularization parameter for each method λ1 = 100. We used twice as many SGD epochs as
SVRG epochs, because one iteration in SVRG takes twice as many Hessian-vector product class as SGD. We
ran the Arnoldi method for 30 iteration, which is less than SGD, this was due to lack of memory to run the
Arnoldi method for more iterations (discussed in our limitations for this method).

WikiText. Similar to zsRE, each method requires a different set of hyperparameters, refer to Table 7. We
note that we use the same regularization parameter for each method λ1 = 1.

G.3 Evaluation Methodology and Other Details
Here we specify the quantities that appear on the x and y axes of the plots in this paper. We also give some
extra details of the experimentation.

x Axis. We are interesting in how the empirical influence function differs from the population influences
functions as sample size increases. Therefore, on the x axis we place the size of the subset (sample size) of
the original population that was used to calculate the empirical influence.

y Axis. In each of our experimentation’s we demonstrate how certain quantities change that use the influence
function change as the sample size increases. For both of the simulations and the small economic datasets,
we calculate the normalized Hessian difference between the empirical influence and populations influence,
||In(z)− I(z)||2H? . Lastly for both of the language model experiments (zsRE and WikiText), we compute the
difference in the influence on the test set between the empirical and population influence, Gn(z)−G(z).

Software. We used Python 3.7.11, Pytorch 1.10.2 and HuggingFace Transformers 4.16.2.

Hardware. All experiments were run on 4 NIVIDIA Titan V GPU with 12GB memory.
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H Technical Definitions, Tools, and Results

H.1 Definitions
Definition 25 (Sub-Gaussian variable). Let S ∈ R be a mean-zero random variable. We say S is sub-Gaussian
with variance parameter σ2, if for any λ ∈ R

E[exp(λS)] ≤ exp

(
σ2λ2

2

)
.

Moreover, we define the sub-Gaussian norm of S as

‖S‖ψ2
:= inf

{
t > 0 : E

[
exp

(
S2

t2

)]
≤ 2

}
.

Definition 26 (Sub-Gaussian vector). Let S ∈ Rp be a mean-zero random vector. We say S is sub-Gaussian
if 〈S, s〉 is sub-Gaussian for every s ∈ Rp. Moreover, we define the sub-Gaussian norm of S as

‖S‖ψ2
:= sup
‖s‖2=1

‖〈S, s〉‖ψ2
.

Note that ‖.‖ψ2
is a norm and satisfies, e.g., the triangle inequality.

Definition 27 (Matrix Bernstein condition). Let H ∈ Rp×p be a zero-mean symmetric random matrix. We
say H satisfies a Bernstein condition with parameter b > 0 if, for all j ≥ 3,

E[Hj ] � 1

2
j!bj−2V(H).

Definition 28 (Pseudo self-concordance). Let X ⊂ Rp be open and f : X → R be a closed convex function.
For a constant R > 0, we say f is pseudo self-concordant on X if

|D3
xf(x)[u, u, v]| ≤ R‖u‖2∇2f(x)‖v‖2

H.2 Implications of Pseudo Self-Concordance
We give in this section useful properties of pseudo self-concordant functions. We denote by f : Rp → R a
pseudo self-concordant function with parameter R throughout this section.

The next result shows that the Hessian of a pseudo self-concordant function cannot vary too fast.

Proposition 29 (Bach (2010), Prop. 1). For any x, y ∈ Rp, we have

e−R‖y−x‖2∇2f(x) � ∇2f(y) � eR‖y−x‖2∇2f(x).

We prove below a Lipschitz-type property for the normalized Hessian of a pseudo self-concordant function.
Let A, J ∈ Rp×p where J is p.s.d. We denote ‖A‖J := ‖J1/2AJ1/2‖.

Lemma 30. Let J ∈ Rp×p be p.s.d. For any x1, x2, x? ∈ Rp, we have

‖∇2f(x2)−∇2f(x1)‖J ≤ ReR‖x1−x?‖2∨‖x2−x?‖2‖∇2f(x?)‖J‖x2 − x1‖2.

Proof. Take an arbitrary v ∈ Rp with ‖v‖2 = 1, and denote v̄ := J1/2v. It holds that

|v̄>∇2f(x2)v̄ − v̄>∇2f(x1)v̄| = |D2f(x2)[v̄, v̄]−D2f(x1)[v̄, v̄]| = |D3f(x̄)[v̄, v̄, x2 − x1]|

for some x̄ ∈ Conv{x1, x2} by the mean value theorem. By the pseudo self-concordance of f , we obtain

|D3f(x̄)[v̄, v̄, x2 − x1]| ≤ R‖v̄‖2∇2f(x̄)‖x2 − x1‖2.
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According to Proposition 29, we know ∇2f(x̄) � eR‖x̄−x?‖2∇2f(x?). As a result,

R‖v̄‖2∇2f(x̄)‖x2 − x1‖2 ≤ ReR‖x1−x?‖2∨‖x2−x?‖2 v̄>∇2f(x?)v̄‖x2 − x1‖2.

Therefore,

‖∇2f(x2)−∇2f(x1)‖J = sup
‖v‖=1

|v̄>∇2f(x2)v̄ − v̄>∇2f(x1)v̄|

≤ sup
‖v‖=1

ReR‖x1−x?‖2∨‖x2−x?‖2 v̄>∇2f(x?)v̄‖x2 − x1‖2

≤ ReR‖x1−x?‖2∨‖x2−x?‖2‖∇2f(x?)‖J‖x2 − x1‖2.

The next result shows that the local distance between the minimizer of f and an arbitrary point x only
depends on the local information at x. Its original version was given by Bach (2010, Proposition 2) and we
state here a variant of it.

Proposition 31. Let x ∈ Rp be such that ∇2f(x) � 0. Whenever ‖∇f(x)‖∇2f(x)−1 ≤
√
λmin(∇2f(x))/(2R),

the function f has a unique minimizer x̄ and

‖x̄− x‖∇2f(x) ≤ 4‖∇f(x)‖∇2f(x)−1 .

The lemma below is an inequality for the spectral norm used in the proof of Proposition 10. Even though
we prove it for general matrices A and B, we will only use it for B = Id.

Lemma 32. Let A and B be two p.d. matrices of size p× p. Assume that ‖A−B‖ ≤ s < λmin(B). Then
we have

‖A−1 −B−1‖ ≤ s

λmin(B)[λmin(B)− s] .

In particular, if B = Id, we have ‖A−1 −B−1‖ ≤ s/(1− s).

Proof. Since ‖A−B‖ ≤ s, it holds that

B − sIp � A � B + sIp.

It then follows from λmin(B)Ip � B that

[1− s/λmin(B)]B � A � [1 + s/λmin(B)]B.

As a result, we obtain

1

1 + s/λmin(B)
B−1 � A−1 � 1

1− s/λmin(B)
B−1.

Hence,

‖A−1 −B−1‖ ≤ s/λmin(B)

1− s/λmin(B)
‖B−1‖ ≤ s

λmin(B)[λmin(B)− s] .

H.3 Concentration of Random Vectors and Matrices
It follows from Vershynin (2018, Eq. (2.17)) that a bounded random vector is sub-Gaussian.

Lemma 33. Let S be a random vector such that ‖S‖2
a.s.
≤ M for some constant M > 0. Then S is

sub-Gaussian with ‖S‖ψ2
≤M/

√
log 2.
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As a direct consequence of Vershynin (2018, Prop. 2.6.1), the sum of i.i.d. sub-Gaussian random vectors is
also sub-Gaussian.

Lemma 34. Let S1, . . . , Sn be i.i.d. sub-Gaussian random vectors, then we have ‖∑n
i=1 Si‖

2
ψ2
≤ C∑n

i=1‖Si‖
2
ψ2
.

We call a random vector S ∈ Rd isotropic if E[S] = 0 and E[SS>] = Id. The following theorem is a tail
bound for quadratic forms of isotropic sub-Gaussian random vectors.

Theorem 35 (Ostrovskii and Bach (2021), Theorem A.1). Let S ∈ Rd be an isotropic random vector with
‖S‖ψ2

≤ K, and let J ∈ Rd×d be positive semi-definite. Then,

P(‖S‖2J −Tr(J) ≥ t) ≤ exp

(
−cmin

{
t2

K2‖J‖22
,

t

K‖J‖∞

})
.

In other words, with probability at least 1− δ, it holds that

‖S‖2J −Tr(J) ≤ CK2
(
‖J‖2

√
log (e/δ) + ‖J‖∞ log (1/δ)

)
, (45)

where C is an absolute constant.

The next lemma, which follows from Wainwright (2019, Eq. (6.30)), shows that a matrix with bounded
spectral norm satisfies the matrix Bernstein condition.

Lemma 36. Let H be a zero-mean random matrix such that ‖H‖2
a.s.
≤ M for some constant M > 0. Then

H satisfies the matrix Bernstein condition with b = M and σ2
H = ‖V(H)‖2. Moreover, σ2

H ≤ 2M2.

The next theorem is the Bernstein bound for random matrices.

Theorem 37 (Wainwright (2019), Theorem 6.17). Let {Hi}ni=1 be a sequence of zero-mean independent
symmetric random matrices that satisfies the Bernstein condition with parameter b > 0. Then, for all t > 0,
it holds that

P

(∥∥∥∥∥ 1

n

n∑
i=1

Hi

∥∥∥∥∥ ≥ t
)
≤ 2Rank

(
n∑
i=1

V(Hi)

)
exp

{
− nt2

2(σ2 + bt)

}
, (46)

where σ2 := 1
n‖
∑n
i=1 V(Hi)‖2.

H.4 Convergence Bounds of Optimization Algorithms
We recall here the convergence bounds of various linear system solvers.

Stochastic gradient descent. We give here the convergence bounds of tail-averaged stochastic gradient
descent (SGD) for general strongly convex quadratics from (Jain et al., 2017b,a).

Suppose we wish to minimize the function

f(u) =
1

2
〈u,Au〉+ 〈b, u〉 , (47)

where A ∈ Rd×d is strictly positive definite and b ∈ Rd is given. Denote u? = arg minu f(u) = −A−1b.
Starting from some u0 ∈ Rd, consider the SGD iterations

ut+1 = ut − γ(Âtut + b) , (48)

where Ât is a stochastic estimator of the Hessian A. We make the following assumptions:
(a) The Hessian estimator Â of A is unbiased, i.e., E[Â] = A. Further, we have the second moment bound

E[Â2] � B2A for some B2 > 0. If Â � LI almost surely, then B2 ≤ L is always true.
(b) The minimial eigenvalue of the Hessian A is bounded λmin(A) ≥ µ for some µ > 0.

48



The bounds depend on the covariance matrix of the stochastic gradients at u = u?:

Σ := E
[
(Âu? + b)(Âu? + b)>

]
= E

[
ÂA−1bb>A−1Â

]
− bb> .

The noise contribution is characterized by the trace of the sandwich matrix

σ2 := Tr(A−1/2ΣA−1/2) = E
[
u>? A

1/2(A−1/2ÂA−1/2 − I)2A1/2u?

]
.

The degree of misspecification is captured by the scalar

ρ =
d ‖A−1/2ΣA−1/2‖2
Tr(A−1/2ΣA−1/2)

.

Theorem 38 ((Jain et al., 2017b,a)). Consider the sequence (ut)
∞
t=0 produced by stochastic gradient descent

(48) on function (47) with a step size γ = 1/(2B2). The tail-averaged iterate ūt = (2/t) =
∑t
τ=t/2 uτ satisfies

E‖ūτ − u?‖2A ≤ 2κ exp

(
− t

4κ

)
‖u0 − u?‖2A + 8(1 + ρ)

σ2

t
,

where κ = B2/µ is a condition number.

Stochastic variance reduced gradient (SVRG) and its Acceleration.
Consider the optimization problem

min
u∈Rd

[
f(u) =

1

n

n∑
i=1

fi(u)

]
,

where each fi is L-smooth and convex, and f is µ-strongly convex. If each fi is the quadratic

fi(u) =
1

2
〈u,Aiu〉+ b ,

then the smoothness is equivalent to 0 � Ai � LId for each i and the strong convexity to A := (1/n)
∑n
i=1Ai �

µId. Let u? = arg min f(u). For the quadratic example above, we have u? = A−1b
The following is the convergence bound for SVRG (Johnson and Zhang, 2013).

Theorem 39 ((Hofmann et al., 2015)). The sequence (ut) produced by SVRG satisfies

E[f(ut)− f(u?)] ≤ C1κ exp

(
− t

C2(n+ κ)

)
(f(u0)− f(u?)) ,

for κ = L/µ and some absolute constants C1 and C2.

Accelerated SVRG (Lin et al., 2018; Allen-Zhu, 2017) satisfies the following bound.

Theorem 40. The sequence (ut) produced by accelerated SVRG satisfies

E[f(ut)− f(u?)] ≤ C1κ exp

(
− t

C2(n+
√
nκ)

)
(f(u0)− f(u?)) ,

where κ = L/µ is the condition number and C1 and C2 are absolute constants.
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E[Z]

qZ(α)

Sα(Z) = E[Z |Z > qZ(α)]

area = 1− α

Figure 5: Expectation, quantile, and superquantile of a continuous random variable Z at level α ∈ (0, 1).

H.5 Superquantile Review
We review the various equivalent expressions of the superquantile. Consider a real-valued random variable Z
with distribution P , cumulative distribution function FZ and quantile function qZ(α) = F−1

Z (α).
The following are equivalent expressions for the superquantile:

Sα(Z) = sup

{
EQ[Z] :

dQ

dP
≤ 1

1− α

}
= inf
η∈R

{
η +

1

1− αEP (Z − η)+

}
=

1

1− α

∫ 1

α

qZ(β) dβ .

(49)

When Z is a continuous random variable, the third expression is equivalent to (see Figure 5)

Sα(Z) = E[Z |Z > qZ(α)] .

When Z is discrete and takes equiprobable values z1, · · · , zn, the three expressions above reduce to the
following

Sα(Z) = max

{
n∑
i=1

wizi : 0 ≤ wi ≤
1

(1− α)n
for all i ∈ [n] ,

n∑
i=1

wi = 1

}

= min
η∈R

{
η +

1

(1− α)n

n∑
i=1

(zi − η)+

}

=
1

(1− α)n

∑
i∈I

zi +
δα

1− αqZ(α) ,

(50)

where I = {i : zi > qZ(α)} and δα = FZ(qZ(α))− α. Note that δα = 0 when αn is an integer.
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