Influence Function and NLP Application

Jillian Fisher¹, Lang Liu1, Krishna Pillutla², Yejin Choi ${ }^{3,4}$, and Zaid Harchaoui ${ }^{1}$
${ }^{1}$ Department of Statistics, University of Washington, ${ }^{2}$ Google Research, ${ }^{3}$ Paul G. Allen School of Computer Science \& Engineering, University of Washington, ${ }^{4}$ Allen Institute for Artificial Intelligence

Motivation

We rely on models for important tasks...

But how do we know we can trust these models?

Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
- Experiment: Is there always meaning?
- Most Influential Subset
- Experiment: Are all statistics a lie?!
- NLP Connection
- Will there be influence in your future?

Background: Notation

Setting: Consider $\theta \in \Theta$, constructed from i.i.d sample $z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
True Parameter
$\theta_{\star}:=\underset{\theta \in \Theta}{\arg \min } \mathbb{E}_{Z \sim P}[\ell(Z, \theta)]$
Estimator
$\theta_{n}:=\underset{\theta \in \Theta}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i}, \theta\right)$

Background: Influence Function

Consider a prediction problem,

Background: Notation

Influence Function: quantify the influence of a fixed data point z on an estimator θ_{n}

$$
I_{n}(z)=\frac{d \theta_{n, \epsilon, z}}{d \epsilon} \approx \frac{\theta_{n, \epsilon, z}-\theta_{n}}{\epsilon}
$$

Cook and Weisberg Formula

$$
I_{n}(z)=-H_{n}\left(\theta_{n}\right)^{-1} \nabla \ell\left(z, \theta_{n}\right) .
$$

where $H_{n}\left(\theta_{n}\right)$ is the empirical Hessian

Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
- Experiment: Is there always meaning?
- Most Influential Subset
- Experiment: Are all statistics a lie?!
- NLP Connection
- Experiment: Will there be influence in your future?

Assumptions: Pseudo Self-Concordance

1. Simple definition if we assume linear prediction models (i.e. $\ell(\theta)=\ell\left(Y, X^{T} \theta\right)$). We consider $\ell(\theta)$ is pseudo self-concordant if

$$
\left|\nabla^{3} \ell(z, \theta)\right| \leq \nabla^{2} \ell(z, \theta)
$$

Prevents $\nabla^{2} \ell(z, \theta)$ from changing too quickly with θ

Consequence: Spectral Approximation of the Hessian

$$
\frac{1}{2} H\left(\theta^{\prime}\right) \leq H(\theta) \leq 2 H\left(\theta^{\prime}\right) \text { for } \theta \text { close to } \theta^{\prime}
$$

Illustration of Pseudo Self-Concordance

Black curve: population function $f(x)$; colored dot: reference point x_{i}; colored dashed curve: quadratic approximation at the corresponding reference point $Q\left(x ; x_{i}\right)$.

Assumptions

2. Normalized gradient $H\left(\theta_{\star}\right)^{-1 / 2} \nabla \ell\left(Z, \theta_{\star}\right)$ at θ_{\star} is sub-Gaussian with parameter K_{1}

Since $\mathbb{E}\left[\nabla \ell\left(Z, \theta_{\star}\right)\right]=0$, then Assumption 2 gives a high prob. bound on $\left\|\nabla \ell\left(Z, \theta_{\star}\right)\right\|_{H_{\star}}^{-1}$
3. There exist $K_{2}>0$ such that the standardized Hessian at θ_{\star} satisfies a Bernstein condition with parameter K_{2}

Moreover,

$$
\sigma_{H}^{2}:=\left\|\operatorname{Var}\left(H\left(\theta_{\star}\right)^{-1 / 2} \nabla^{2} \ell\left(Z, \theta_{\star}\right) H\left(\theta_{\star}\right)^{-1 / 2}\right)\right\|_{2} \text { is finite. }
$$

Assumption 3 gives spectral concentration

$$
(1 / 2) H(\theta) \prec H_{n}(\theta) \prec 2 H(\theta)
$$

Results: Statistical Bound

Theorem 1. Suppose the assumptions ${ }^{1}$ hold and

$$
\begin{aligned}
& n \geq C\left(\frac{p}{\mu_{\star}} \log \frac{1}{\delta}+\log \frac{p}{\delta}\right) \\
& \text { where } \mu_{\star}=\lambda_{\min }\left(H\left(\theta_{\star}\right)\right) .
\end{aligned}
$$

Then, with probability at least $1-\delta$, we have $\frac{1}{4} H\left(\theta_{\star}\right) \leq H_{n}\left(\theta_{n}\right) \leq 3 H\left(\theta_{\star}\right)$ and

$$
\left\|I_{n}(z)-I(z)\right\|_{H_{\star}}^{2} \leq C{\frac{p_{\star}^{2}}{\mu_{\star} n}}_{\operatorname{poly}} \log \left(\frac{p}{\delta}\right)
$$

- Only logarithmic dependence on p (dim. of param.)
- p_{\star} is the degrees of freedom (model misspecification)
- Rate of $1 / n$

1. Assumptions met by Generalized Linear Models

Experiment: Simulation

Simulation

$x \sim N(0,1)$
Linear (Ridge) Regression
Logistic Regression

X-axis: Training Sample Size
Y-axis: Difference in empirical vs. population IF

Results

- See $1 / n$ of our bound observed
- Straight line in log-log scale
-Hard to approximate classification population

Experiment: Real Dataset

Real Dataset

Cash Transfer

- X: Socio-economic covariates
- Y: Total consumption (regression)

Oregon Medicaid

- X: Health-related covariates

1. Y: Estimate overall health (classification)
2. Y: Number of good days (regression)

X-axis: Training Sample Size
Y-axis: Difference in empirical vs. population IF

Results

- See $1 / \mathrm{n}$ of our bound observed
- Straight line in log-log scale
-Hard to approximate classification population

Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
- Experiment: Is there always meaning?
- Most Influential Subset
- Experiment: Are all statistics a lie?!
- NLP Connection
- Will there be influence in your future?

Computational Challenge

Cook and Weisberg Formula

Second derivative ($\mathrm{p} \times \mathrm{p}$) $p=\operatorname{dim}$ of parameter

$$
I_{n}(z)=-H_{n}\left(\theta_{n}\right)^{-1} \nabla \ell\left(z, \theta_{n}\right)
$$

Can't be computed for large values of p

Instead use iterative algorithms to approximately minimize

$$
g_{n}(\mu):=\frac{1}{2}\left\langle\mu, H_{n}\left(\theta_{n}\right) \mu\right\rangle+\left\langle\nabla \ell\left(z, \theta_{n}\right), \mu\right\rangle
$$

Algorithms
> Conjugate Gradient (CG)
> Stochastic Gradient Descent (SGD)
> Stochastic Variance Reduced Gradient (SVRG)
> Arnoldi - Low Rank

Result: Computational Bound

Proposition 1. Consider the setting of Theorem 1, and let \mathscr{G} denote the event under which its conclusions hold. Let $\hat{I}_{n}(\theta)$ be an estimate of $I_{n}(\theta)$ that satisfies

$$
\mathbb{E}_{Z_{1: n}}\left[\left\|\hat{I}_{n}(z)-I_{n}(z)\right\|_{H_{n}\left(\theta_{n}\right)}^{2}\right] \leq \epsilon
$$

Then

$$
\mathbb{E}_{\mathscr{G}}\left[\left\|\hat{I}_{n}(z)-I(z)\right\|_{H\left(\theta_{\star}\right)}^{2}\right] \leq 8 \epsilon+C \frac{p_{\star}^{2}}{\mu_{\star} n} \text { poly } \log \frac{p}{\delta}
$$

- Using an ϵ-approximate minimizer of the empirical influence approximation
- Translating approx. error in $H_{n}\left(\theta_{n}\right)$-norm to the H_{\star}-norm under \mathscr{G} (Theorem 1)
- Total Error under $O(\epsilon)$ is $O(n(\epsilon) T(\epsilon))$

Computational

Result: Computational Bound

Proposition 1. Consider the setting of Theorem 1, and let \mathscr{G} denote the event under which its conclusions hold. Let $\hat{I}_{n}(\theta)$ be an estimate of $I_{n}(\theta)$ that satisfies

$$
\mathbb{E}_{Z_{1: n}}\left[\left\|\hat{I}_{n}(z)-I_{n}(z)\right\|_{H_{n}\left(\theta_{n}\right)}^{2}\right] \leq \epsilon
$$

Then

$$
\mathbb{E}_{\mathscr{G}}\left[\left\|\hat{I}_{n}(z)-I_{n}(z)\right\|_{H\left(\theta_{\star}\right)}^{2}\right] \leq 8 \epsilon+C \frac{p_{\star}^{2}}{\mu_{\star} n} \text { poly } \log \frac{p}{\delta}
$$

Example: Stochastic Variance Reduction Gradient (SVRG)

- Requires $T_{n}(\epsilon)=C\left(n+\kappa_{n}\right) \log \left(\frac{\kappa_{n}\left\|u_{0}-u_{\star}\right\|_{H_{n}\left(\theta_{n}\right)}}{\epsilon}\right)$ iterations to return an ϵ-approximate minimizer.
- Each iteration requires n Hessian-vector products
- To make statistical error to be smaller than $\epsilon, n \geq n(\epsilon)=\tilde{O}\left(\frac{p_{\star}^{2}}{\mu_{\star} \epsilon}\right)$ from Theorem 1
- Total error under $O(\epsilon)$ is $O(n(\epsilon) T(\epsilon))$ - by Proposition 1
κ_{\star} is the condition number

$\Delta_{\star}=\left\|I_{n}(z)\right\|_{H\left(\theta_{\star}\right)}^{2}$

Result: Global Bounds

Method	Computational Error	Total Error
Conjugate Gradient	$n \sqrt{\kappa_{n}}$	$\frac{\kappa_{\star}^{3 / 2} p_{\star}^{2}}{\epsilon}$
Stochastic Gradient Descent	$\frac{\sigma_{n}^{2}}{\epsilon}+\kappa_{n}$	$\frac{\sigma_{\star}^{2}}{\epsilon}+\kappa_{\star}$
Stochastic Variance Reduction Gradient	$\left(n+\kappa_{n}\right)$	$\kappa_{\star}\left(1+\frac{p_{\star}^{2}}{\epsilon}\right)$
Accelerated Stochastic		
Variance Reduction Gradient	$\left(n+\sqrt{n \kappa_{n}}\right)$	$\kappa_{\star}\left(\sqrt{\frac{p_{\star}^{2}}{\epsilon}}+\frac{p_{\star}^{2}}{\epsilon}\right)$

Experiment: Is there always meaning?

Question Answering

- Input: question
- Response: factual correct answer
- $X=$ What country did The Laughing Cow originate?
- $Y=$ France
- zsRE dataset (Levy et. al., 2017)/BART-base model
- Average over 5 data points

Question Answering

Experiment: Is there always meaning?

Text Continuation

- Input: Start of paragraph
- Response: 10 tokens continuation
- X = "The interchange is considered by Popular Mechanics to be one of the...",
- $y=$ "World's 18 Strangest Roadways because of its height"
- WikiText (Merity et. al., 2017)/GPT2
- Averaged over 5 data points

Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
- Experiment: Is there always meaning?
- Most Influential Subset
- Experiment: Are all statistics a lie?!
- NLP Connection
- Experiment: Will there be influence in your future?

MIS: Definition

Most Influential Subset

\bullet Given an $\alpha \in(0,1)$, and a test function $h: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Most influential set is the subset of data (size at most αn), which when removed leads to largest increase in the test function.

MIS: Definition

Most Influential Subset

- Given $\mathrm{n} \alpha \in(0,1)$, and a test function $h: \mathbb{R}^{p} \rightarrow \mathbb{R}$

Most influential subset is the subset of data (size at most αn), which when removed leads to largest increase in the test function.

Mathematically,

$$
\max _{w \in W_{\alpha}} h(w \cdot \theta)
$$

MIS: Definition

First-order Taylor expansion: $f(x)=f(a)+f^{\prime}(a)(x-a)$

Instead Broderick et al. (2020) use first-order Taylor expansion in $h\left(\theta_{n, w}\right)$ around $w=1$

$$
h\left(\theta_{n, w}\right) \approx h\left(\theta_{n}, \frac{1}{n}\right)+\left\langle\left.\nabla_{w} h\left(\theta_{n}, w\right)\right|_{w=\frac{1}{n}}, w-\frac{1}{n}\right\rangle
$$

1 is a vector of all 1's

MIS: Definition

Instead Broderick et al. (2020) use linear approximation

$$
h\left(\theta_{n, w}\right) \approx h\left(\theta_{n}\right)+\left\langle w-\frac{1_{n}}{n},\left.\nabla_{w} h\left(\theta_{n}, w\right)\right|_{w=1_{n} / n}\right\rangle
$$

Which leads to the influence of the most influential subset,

$$
I_{\alpha, n}(h):=\max _{w \in W_{\alpha}}\left\langle w,\left.\nabla_{w} h\left(\theta_{n}, w\right)\right|_{w=\mathbf{1}_{n} / n}\right\rangle
$$

Which can be simplified using the implicit function theorem and the chain rule to a closed form

$$
I_{\alpha, n}(h):=\max _{w \in W_{\alpha}} \sum_{i=1}^{n} w_{i} v_{i}
$$

Greedy algorithm that zeros out the largest αn entries of $v_{i}^{\prime} \mathrm{s}$!

Where $v_{i}=-\left\langle\nabla h\left(\theta_{n}\right), H_{n}\left(\theta_{n}\right)^{-1} \nabla \ell\left(Z_{i}, \theta_{n}\right)\right\rangle$

Main Results: Most Influential Subset

Theorem 2. Suppose the added assumptions hold and the sample size n satisfies the condition in Theorem 1.

Then with probability at least $1-\delta$

$$
\underline{\left(I_{\alpha, n}(h)-I_{\alpha}(h)\right)^{2}} \leq \frac{C_{M_{1}, M_{2}, M_{1}^{\prime}, M_{2}^{\prime}}}{(1-\alpha)^{2}} \frac{R^{2} p_{\star}}{\mu_{\star} n} \log \frac{n \vee p}{\delta}
$$

- Only logarithmic dependence on p
- p_{\star} is affine-invariant
- - rate

Experiment: Real Dataset

Oregon Medicaid study (Finkestein et al., 2012)

- Lottery from 90,000 people to sign up for Medicaid = randomization into treatment (Medicaid) and control (no Medicaid) groups
- Measured outcomes one year after treatment group received Medicaid ($n \approx 22,000$)

$$
y=\beta_{0}+\beta_{1} L O T T E R Y+\beta_{2} X_{\text {covariates }}
$$

- Test function, $h(x)$: is β_{1} significant?

Experiment: Most Influential Subset

MIS (Question Answering)

- 4 different test points (questions/answer)
- $\alpha=0.05,0.1$ (size of subset)
- Arnoldi method was used to approximate influence

- Downward trend $->$ similar to influence of 1 datapoint

Experiment: Most Influential Subset

Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
- Discussion: Is there always meaning?
- Most Influential Subset
- Discussion: Are all statistics a lie?!
- NLP Connection
- Will there be influence in your future?

Related Work in NLP

Influential points

- Leave one out training (data point importance)
- Saliency maps (token importance)
- Self-influence (Bejan et al. , 2023)
- Influence function for NLP.... Still in development

Machine Unlearning
 - Quark - reinforcement learning (Lu et al., 2022)
 - SISA Training (Kumar et al., 2022)

Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions	
Xiaochuang Han, Byron C. Wallace, Yulia Tsvetkov	aug 272020
Influence Functions in Deep Learning Are Fragile	Influence Functions Do Not Seem to Predict Usefulness in NLP Transfer Learning

Samyadeep Basu, ${ }^{*}$ Phillip Pope *\& Soheil Feizi
Department of Computer Science
University of Maryland, College Park
\{sbasu12, pepope,sfeizi\}@cs.umd.edu

Conclusion and Future Extensions

Conclusion

- Presented statistical and computational guarantees for influence functions for generalized linear models
- Established the statistical consistency of most influential subsets method (Broderick et at., 2020) together with non-asymptotic bounds
- Illustrated our results on simulated and real datasets

Future Extension

- Non-convex/Non-smooth penalized M-estimation
- Application for toxicity/bias removal in NLP

Thank You!

Full Paper

References

R. Cook and S. Weisberg. Residuals and influence in regression.New York: Chapman and Hall, New York: Chapman Hall, 1982.
T. Broderick, R. Giordano, and R. Meager. An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference? arXiv Preprint, 2020
D. M. Ostrovskii and F. Bach. Finite-sample analysis of M-estimators using self-concordance.

Electronic Journal of Statistics, 15(1), 2021

Appendix Slides

Algorithms: Conjugate Gradient

```
    \(u_{0}=0, r_{0}=-v-\operatorname{HVP}_{n}\left(u_{0}\right), d_{0}=r_{0}\)
    for \(t=0, \ldots, T-1\) do
        \(\alpha_{t}=\frac{d_{t}^{\top} r_{t}}{d_{t}^{\top} \mathrm{HV}_{n}\left(d_{t}\right)}\)
        \(u_{t+1}=u_{t}+\alpha_{t} d_{t}\)
        \(r_{t+1}=-v-\operatorname{HVP}_{n}\left(u_{t+1}\right)\)
        \(\beta_{t}=\frac{r_{t+1}^{\top} r_{t+1}}{r_{t}^{\top} r_{t}}\)
        \(d_{t+1}=r_{t+1}+\beta_{t} d_{t}\)
    return \(u_{T}\)
```

Algorithm 1 Conjugate Gradient Method to Compute the Influence Function
Input: vector v, batch Hessian vector product oracle $\operatorname{HVP}_{n}(u)=H_{n}\left(\theta_{n}\right) u$, number of iterations T

Algorithms: Stochastic Gradient Descent

```
Algorithm 2 Stochastic Gradient Descent Method to Compute the Influence Function
Input: vector \(v\), Hessian vector product oracle \(\operatorname{HVP}(i, u)=\nabla^{2} \ell\left(z_{i}, \theta_{n}\right) u\), number of iterations \(T\), learning rate \(\gamma\)
    : \(u_{0}=0\)
    for \(t=0, \ldots, T-1\) do
        Sample \(i_{t} \sim \operatorname{Unif}([n])\)
        \(u_{t+1}=u_{t}-\gamma\left(\operatorname{HVP}\left(i_{t}, u_{t}\right)+v\right)\)
    return \(u_{T}\)
```


Algorithms: Stochastic Variance Reduction Gradient

```
Algorithm 4 Stochastic Variance Reduced Gradient Method to Compute the Influence Function
Input: vector \(v\), Hessian vector product oracle \(\operatorname{HVP}(i, u)=\nabla^{2} \ell\left(z_{i}, \theta_{n}\right) u\), number of epochs \(S\), number of iterations per
    epoch \(T\), learning rate \(\gamma\)
    \(u_{T}^{(0)}=0\)
    for \(s=1,2, \ldots, S\) do
        \(u_{0}^{(s)}=u_{T}^{(s-1)}\)
        \(\tilde{u}_{0}^{(s)}=\frac{1}{n} \sum_{i=1}^{n} \operatorname{HVP}\left(u_{0}^{(s)}\right)-v\)
        for \(t=0, \ldots, T-1\) do
            Sample \(i_{t} \sim \operatorname{Unif}([n])\)
            \(u_{t+1}^{(s)}=u_{t}^{(s)}-\gamma\left(\operatorname{HVP}\left(i_{t}, u_{t}^{(s)}\right)-\operatorname{HVP}\left(i_{t}, u_{0}^{(s)}\right)+\tilde{u}_{0}^{(s)}\right)\)
    return \(u_{T}^{(S)}\)
```


Algorithms: Arnoldi

```
Algorithm 5 Arnoldi Method to Compute the Influence Function (Schioppa et al., 2022)
Input: vector \(v\), test function \(h\), initial guess \(u_{0}\), batch Hessian vector product oracle \(\operatorname{HVP}_{n}(u)=H_{n}\left(\theta_{n}\right) u\), number of top
    eigenvalues \(k\), number of iterations \(T\)
Output: An estimate of \(\left\langle\nabla h(\theta), H_{n}\left(\theta_{n}\right)^{-1} v\right\rangle\)
    Obtain \(\Lambda, G=\operatorname{ArNoLDI}\left(u_{0}, T, k\right)\)
                            \(\triangleright\) Cache the results for future calls
    return \(\left\langle G \nabla h(\theta), \Lambda^{-1} G v\right\rangle\)
    procedure Arnoldi \(\left(u_{0}, T, k\right)\)
        \(w_{0}=1=u_{0} /\left\|u_{0}\right\|_{2}\)
        \(A=\mathbf{0}_{T+1 \times T}\)
        for \(t=1, \ldots, T\) do
        Set \(u_{t}=\operatorname{HVP}_{n}\left(w_{t}\right)-\sum_{j=1}^{t}\left\langle u_{t}, w_{j}\right\rangle w_{j}\)
        Set \(A_{j, t}=\left\langle u_{t}, w_{j}\right\rangle\) for \(j=1, \ldots, t\) and \(A_{t+1, t}=\left\|u_{t}\right\|_{2}\)
        Update \(w_{t+1}=u_{t} /\left\|u_{t}\right\|\)
        Set \(\tilde{A}=A[1: T,:] \in \mathbb{R}^{T \times T}\) (discard the last row)
        Compute an eigenvalue decomposition \(\tilde{A}=\sum_{j=1}^{T} \lambda_{j} e_{j} e_{j}^{\top}\) with \(\lambda_{j}\) 's in descending order
        Define \(G: \mathbb{R}^{p} \rightarrow \mathbb{R}^{k}\) as the operator \(G u=\left(\left\langle u, W^{\top} e_{1}\right\rangle, \cdots,\left\langle u, W^{\top} e_{k}\right\rangle\right)\), where \(W=\left(w_{1}^{\top} ; \cdots ; w_{T}^{\top}\right) \in \mathbb{R}^{T \times p}\)
        return diagonal matrix \(\Lambda=\operatorname{Diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right)\) and the operator \(G\)
```


Computational Results: CG

Proposition 1. Consider the setting of Theorem 1, and let \mathscr{G} denote the event under which its
conclusions hold. Let $\hat{I}_{n}(\theta)$ be an estimate of $I_{n}(\theta)$ that satisfies $\mathbb{E}\left[\left\|\hat{I}_{n}(z)-I_{n}(z)\right\|_{H_{n}\left(\theta_{n}\right)}^{2} \mid Z_{1: n}\right] \leq \epsilon$.
Then

$$
\mathbb{E}\left[\left\|\hat{\boldsymbol{I}}_{n}(\boldsymbol{z})-\boldsymbol{I}_{\boldsymbol{n}}(\boldsymbol{z})\right\|_{\boldsymbol{H}_{\star}}^{2} \mid \mathscr{G}\right] \leq 8 \epsilon+C \frac{R^{2} p_{\star}^{2}}{\mu_{\star} n} \log ^{3}\left(\frac{p}{\delta}\right)
$$

Example: Conjugate Gradient

- Requires $T_{n}(\epsilon):=\sqrt{k_{n}} \log \left(\left\|I_{n}(z)\right\|_{H_{n}\left(\theta_{n}\right)}^{2} / \epsilon\right)$ iterations to return an ϵ
- Each iteration requires n Hessian-vector products

To make statistical error to be smaller than $\epsilon, n \geq n(\epsilon)=\widetilde{O}\left(\frac{R^{2} p_{\star}^{2}}{\mu_{\star} \epsilon}\right)$
Total error under $O(\epsilon)$ is $O(n(\epsilon) T(\epsilon))$ - by Proposition 1

Experiment: Most Influential Subset

MIS Test Questions

1. What position did Víctor Vázquez Solsona play? - midfielder
2. The nationality of Jean-Louis Laya was what? - French
3. Where is Venera 9 found? - Venus
4. Who set the standards for ISO 3166-1 alpha-2? - International

Organization for Standardization
5. In which language Nintendo La Rivista Ufficiale monthly football magazine reporting? - Italian

Experiment: Most Influential Subset

1. What position did Víctor Vázquez Solsona play? Midfielder
2. Was Goldmoon male or female? Female
3. Where is Venera 9 found? Venus
4. In which language Nintendo La Rivista Ufficiale monthly football magazine reporting? Italian
