# Influence Function and NLP Application

Jillian Fisher<sup>1</sup>, Lang Liu<sup>1</sup>, Krishna Pillutla<sup>2</sup>, Yejin Choi<sup>3,4</sup>, and Zaid Harchaoui<sup>1</sup>

<sup>1</sup>Department of Statistics, University of Washington, <sup>2</sup>Google Research, <sup>3</sup>Paul G. Allen School of Computer Science & Engineering, University of Washington, <sup>4</sup>Allen Institute for Artificial Intelligence

UNIVERSITY of WASHINGTON

### **Motivation**

#### We rely on models for important tasks...



#### But how do we know we can trust these models?



## Outline

## Background: Influential Points

- Statistical Finite Bound
- Computational Bound
  - Experiment: Is there always meaning?
- Most Influential Subset
  - Experiment: Are all statistics a lie?!
- NLP Connection
  - Will there be influence in your future?

## **Background: Notation**

Setting: Consider  $\theta \in \Theta$ , constructed from i.i.d sample  $z = \{(x_i, y_i)\}_{i=1}^n$ 





## **Background: Influence Function**

Consider a prediction problem,



 $\mathbf W$  university of washington

## **Background: Notation**



## Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
  - Experiment: Is there always meaning?
- Most Influential Subset
  - Experiment: Are all statistics a lie?!
- NLP Connection
  - Experiment: Will there be influence in your future?

## Assumptions: Pseudo Self-Concordance

1. Simple definition if we assume *linear prediction models (i.e.*  $\ell(\theta) = \ell(Y, X^T \theta)$ ). We consider  $\ell(\theta)$  is pseudo self-concordant if

 $\left| \nabla^{3} \ell(z,\theta) \right| \leq \nabla^{2} \ell(z,\theta)$ 

Prevents  $\nabla^2 \ell(z, \theta)$  from changing too quickly with  $\theta$ 

Consequence: Spectral Approximation of the Hessian  $\frac{1}{2}H(\theta') \le H(\theta) \le 2H(\theta') \text{ for } \theta \text{ close to } \theta'$ 



Black curve: population function f(x); colored dot: reference point  $x_i$ ; colored dashed curve: quadratic approximation at the corresponding reference point  $Q(x; x_i)$ .

## **Assumptions**

2. Normalized gradient  $H(\theta_{\star})^{-1/2} \nabla \ell(Z, \theta_{\star})$  at  $\theta_{\star}$  is sub-Gaussian with parameter  $K_1$ 

Since  $\mathbb{E}[\nabla \ell(Z, \theta_{\star})] = 0$ , then Assumption 2 gives a high prob. bound on  $\|\nabla \ell(Z, \theta_{\star})\|_{H_{\star}}^{-1}$ 

3. There exist  $K_2 > 0$  such that the **standardized Hessian at**  $\theta_{\star}$  **satisfies a Bernstein condition** with parameter  $K_2$ 

Moreover,

$$\sigma_H^2 := \|\operatorname{Var}(H(\theta_\star)^{-1/2} \nabla^2 \mathscr{C}(Z, \theta_\star) H(\theta_\star)^{-1/2})\|_2 \text{ is finite.}$$

Assumption 3 gives spectral concentration

 $(1/2)H(\theta) \prec H_n(\theta) \prec 2H(\theta)$ 

**Generalized Linear Models satisfy these assumptions** 

## **Results: Statistical Bound**

Theorem 1. Suppose the assumptions<sup>1</sup> hold and

$$n \ge C\left(\frac{p}{\mu_{\star}}\log\frac{1}{\delta} + \log\frac{p}{\delta}\right)$$

where  $\mu_{\star} = \lambda_{\min}(H(\theta_{\star}))$ .

Then, with probability at least  $1 - \delta$ , we have  $\frac{1}{4}H(\theta_{\star}) \leq H_n(\theta_n) \leq 3H(\theta_{\star})$  and

$$\|I_n(z) - I(z)\|_{H_{\star}}^2 \le C \frac{p_{\star}^2}{\mu_{\star} n} \text{poly} \log\left(\frac{p}{\delta}\right)$$

- Only logarithmic dependence on p (dim. of param.)
- $p_{\star}$  is the degrees of freedom (model misspecification)
- Rate of 1/n

1. Assumptions met by Generalized Linear Models

## **Experiment:** Simulation

#### Simulation

- $x \sim N(0,1)$
- Linear (Ridge) Regression Logistic Regression
- *X-axis: Training Sample Size Y-axis: Difference in empirical vs. population IF*

### Results

- •See 1/n of our bound observed
- •Straight line in log-log scale
- Hard to approximate classification population



## **Experiment: Real Dataset**

- **Real Dataset**
- Cash Transfer
  - X: Socio-economic covariates
  - Y: Total consumption (regression)
- Oregon Medicaid
  - X: Health-related covariates
    - 1. Y: Estimate overall health (classification)
  - 2. Y: Number of good days (regression)
- X-axis: Training Sample Size Y-axis: Difference in empirical vs. population IF

#### Results

- •See 1/n of our bound observed
- •Straight line in log-log scale
- Hard to approximate classification population



## Outline

- Background: Influential Points
- Statistical Finite Bound

## Computational Bound

- Experiment: Is there always meaning?
- Most Influential Subset
  - Experiment: Are all statistics a lie?!
- NLP Connection
  - Will there be influence in your future?

## **Computational Challenge**

Second derivative (p x p) p = dim of parameter

Cook and Weisberg Formula

$$I_n(z) = -H_n(\theta_n)^{-1} \nabla \ell(z, \theta_n)$$
  
Can't be computed for large values of p

Instead use iterative algorithms to approximately minimize

$$g_n(\mu) \coloneqq \frac{1}{2} \langle \mu, H_n(\theta_n) \mu \rangle + \langle \nabla \ell(z, \theta_n), \mu \rangle$$

#### Algorithms

- > Conjugate Gradient (CG)
- > Stochastic Gradient Descent (SGD)
- > Stochastic Variance Reduced Gradient (SVRG)
- > Arnoldi Low Rank



## **Result: Computational Bound**

Proposition 1. Consider the setting of Theorem 1, and let  $\mathscr{G}$  denote the event under which its conclusions hold. Let  $\hat{I}_n(\theta)$  be an estimate of  $I_n(\theta)$  that satisfies  $\mathbb{E}_{Z_{1:n}} \left[ \left\| \hat{I}_n(z) - I_n(z) \right\|_{H_n(\theta_n)}^2 \right] \le \epsilon.$ Then  $\mathbb{E}_{\mathscr{G}} \left[ \left\| \hat{I}_n(z) - I(z) \right\|_{H(\theta_\star)}^2 \right] \le 8\epsilon + C \frac{p_\star^2}{\mu_\star n} \text{poly } \log \frac{p}{\delta}$ • Using an  $\epsilon$ -approximate minimizer of the empirical influence approximation

- Translating approx. error in  $H_n(\theta_n)$ -norm to the  $H_{\star}$ -norm under  $\mathcal{G}$  (Theorem 1)
- **Total Error** under  $O(\epsilon)$  is  $O(n(\epsilon)T(\epsilon))$





## **Result: Computational Bound**

Proposition 1. Consider the setting of Theorem 1, and let  $\mathscr{G}$  denote the event under which its conclusions hold. Let  $\hat{I}_n(\theta)$  be an estimate of  $I_n(\theta)$  that satisfies

$$\mathbb{E}_{Z_{1:n}}\left[\left\|\hat{I}_n(z) - I_n(z)\right\|_{H_n(\theta_n)}^2\right] \leq \epsilon.$$

Then

$$\mathbb{E}_{\mathscr{G}}\left[\left\|\hat{I}_{n}(z) - I_{n}(z)\right\|_{H(\theta_{\star})}^{2}\right] \leq 8\epsilon + C \frac{p_{\star}^{2}}{\mu_{\star}n} \text{poly} \log \frac{p}{\delta}$$

Example: Stochastic Variance Reduction Gradient (SVRG)

- Requires  $T_n(\epsilon) = C(n + \kappa_n) \log\left(\frac{\kappa_n \|u_0 u_\star\|_{H_n(\theta_n)}}{\epsilon}\right)$  iterations to return an  $\epsilon$ -approximate minimizer.
- Each iteration requires *n* Hessian-vector products
- To make statistical error to be smaller than  $\epsilon$ ,  $n \ge n(\epsilon) = \tilde{O}\left(\frac{p_{\star}^2}{\mu_{\star}\epsilon}\right)$  from **Theorem 1**
- Total error under  $O(\epsilon)$  is  $O(n(\epsilon)T(\epsilon))$  by Proposition 1

 $\kappa_{\star}$  is the condition number  $\Delta_{\star} = \|I_n(z)\|_{H(\theta_{\star})}^2$ 

Total Error = 
$$\kappa_{\star} \left( 1 + \frac{p_{\star}}{\epsilon} \right) \log \left( \frac{\kappa_{\star} \Delta_{\star}}{\epsilon} \right)$$



## **Result: Global Bounds**

| Method                                                | Computational Error                      | Total Error                                                                                        |
|-------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|
| Conjugate Gradient                                    | $n\sqrt{\kappa_n}$                       | $\frac{\kappa_{\star}^{3/2} p_{\star}^2}{\epsilon}$                                                |
| Stochastic Gradient Descent                           | $\frac{\sigma_n^2}{\epsilon} + \kappa_n$ | $\frac{\sigma_{\star}^2}{\epsilon} + \kappa_{\star}$                                               |
| Stochastic Variance<br>Reduction Gradient             | $(n + \kappa_n)$                         | $\kappa_{\star} \left( 1 + \frac{p_{\star}^2}{\epsilon} \right)$                                   |
| Accelerated Stochastic<br>Variance Reduction Gradient | $(n + \sqrt{n\kappa_n})$                 | $\kappa_{\star} \left( \sqrt{\frac{p_{\star}^2}{\epsilon}} + \frac{p_{\star}^2}{\epsilon} \right)$ |



## **Experiment:** Is there always meaning?

#### **Question Answering**

- Input: question
- Response: factual correct answer
  - X= What country did The Laughing Cow originate?
  - Y= France
- zsRE dataset (Levy et. al., 2017)/BART-base model
- Average over 5 data points

#### **Question Answering**



## **Experiment:** Is there always meaning?

#### **Text Continuation**

- Input: Start of paragraph
- Response: 10 tokens continuation
  - X = "The interchange is considered by Popular Mechanics to be one of the...",
  - y = "World's 18 Strangest Roadways because of its height"
- WikiText (Merity et. al., 2017)/GPT2
- Averaged over 5 data points



## Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
  - Experiment: Is there always meaning?
- Most Influential Subset
  - Experiment: Are all statistics a lie?!
- NLP Connection
  - Experiment: Will there be influence in your future?



#### **Most Influential Subset**

•Given an  $\alpha \in (0,1)$ , and a test function  $h : \mathbb{R}^p \to \mathbb{R}$ 

<u>Most influential set</u> is the subset of data (size at most  $\alpha n$ ), which when removed leads to largest increase in the test function.



## **MIS: Definition**

#### **Most Influential Subset**

#### •Given n $\alpha \in (0,1)$ , and a test function $h : \mathbb{R}^p \to \mathbb{R}$

<u>Most influential subset</u> is the subset of data (size at most  $\alpha n$ ), which when removed leads to largest increase in the test function.

#### Mathematically,



## **MIS: Definition**

First-order Taylor expansion:  $f(x) = f(a) + \frac{f'(a)}{(x - a)}$ 



Instead Broderick et al. (2020) use first-order Taylor expansion in  $h(\theta_{n,w})$  around w = 1

$$h(\theta_{n,w}) \approx h(\theta_n, \frac{1}{n}) + \left\langle \nabla_w h(\theta_n, w) \big|_{w=\frac{1}{n}}, w - \frac{1}{n} \right\rangle$$

1 is a vector of all 1's

## **MIS: Definition**

Instead Broderick et al. (2020) use linear approximation

$$h(\theta_{n,w}) \approx h(\theta_n) + \left\langle w - \frac{\mathbf{1}_n}{n}, \nabla_w h(\theta_n, w) \big|_{w = \mathbf{1}_n/n} \right\rangle$$

Which leads to the influence of the most influential subset,

$$I_{\alpha,n}(h) := \max_{w \in W_{\alpha}} \left\langle w, \nabla_{w} h(\theta_{n}, w) \big|_{w = \mathbf{1}_{n}/n} \right\rangle$$

Which can be simplified using the implicit function theorem and the chain rule to a closed form

$$I_{\alpha,n}(h) := \max_{w \in W_{\alpha}} \sum_{i=1}^{n} w_i v_i$$
  
Where  $v_i = -\langle \nabla h(\theta_n), H_n(\theta_n)^{-1} \nabla \ell(Z_i, \theta_n) \rangle$   

$$I_n(Z_i, \theta_n)$$

## Main Results: Most Influential Subset

Theorem 2. Suppose the added assumptions hold and the sample size n satisfies the condition in Theorem 1. Then with probability at least  $1-\delta$ 

$$\frac{\left(I_{\alpha,n}(h)-I_{\alpha}(h)\right)^{2}}{\left(1-\alpha\right)^{2}} \leq \frac{C_{M_{1},M_{2},M_{1}',M_{2}'}}{\left(1-\alpha\right)^{2}} \frac{R^{2}p_{\star}}{\mu_{\star}n} \log \frac{n \vee p}{\delta}$$

- Only logarithmic dependence on *p*
- $p_{\star}$  is affine-invariant

$$\frac{1}{-rat}$$

$$-$$
 rate  $n$ 

## **Experiment: Real Dataset**

#### Oregon Medicaid study (Finkestein et al., 2012)

- Lottery from 90,000 people to sign up for Medicaid = randomization into treatment (Medicaid) and control (no Medicaid) groups
- Measured outcomes one year after treatment group received Medicaid ( $\underline{n} \approx 22,000$ )

 $y = \beta_0 + \beta_1 LOTTERY + \beta_2 X_{covariates}$ 

• Test function, h(x) : is  $\beta_1$  significant?

| / | le thic case                                   | Original estimate              | Target change                                                 | Refit estimate                                                                           | Observations dropped                                                       |                            |
|---|------------------------------------------------|--------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|
|   | surprising?                                    | 2m 0.133 (0.026)*              | Sign change<br>Significance change<br>Significant sign change | -0.006 (0.025)<br>0.044 (0.026)<br>-0.043 (0.024)                                        | $275 = 1.18\% \\ 162 = 0.69\% \\ 381 = 1.63\%$                             | On average                 |
|   | Health not for 12                              | 2m 0.099 (0.018)*              | Sign change<br>Significance change<br>Significant sign change | $\begin{array}{c} -0.003 \ (0.015) \\ 0.027 \ (0.016) \\ -0.030 \ (0.015)^* \end{array}$ | 155 = 0.66%<br>100 = 0.43%<br>219 = 0.94%                                  | the removal<br>of <.05% of |
| ( | Do you think large da<br>(like the ones we use | ntasets 113 (0.023)*<br>in LLM | Sign change<br>Significance change<br>Significant sign change | -0.006 (0.022)<br>0.039 (0.022)<br>-0.049 (0.022)*                                       | 197 = 0.84%<br>106 = 0.45%<br>291 = 1.24%                                  | the data                   |
|   | pretraining) are this ser<br>change?           | nsitive to<br>317 (0.563)*     | Sign change<br>Significance change<br>Significant sign change | -0.023 (0.535)<br>1.078 (0.558)<br>-1.009 (0.521)                                        | 73 = 0.33%<br>10 = 0.05%<br>144 = 0.66%                                    | Of<br>significance II      |
|   | Not bad days physica                           | al 12m 585 (0.606)*            | Sign change<br>Significance change<br>Significant sign change | $\begin{array}{c} -0.040  (0.577) \\ 1.131  (0.597) \\ -1.141  (0.566)^* \end{array}$    | $87 = 0.41\% \\ 20 = 0.09\% \\ 164 = 0.77\%$                               |                            |
|   | Not bad days menta                             | l 12m 2.082 (0.640)*           | Sign change<br>Significance change<br>Significant sign change | $\begin{array}{c} -0.062 \ (0.607) \\ 1.171 \ (0.625) \\ -1.201 \ (0.594)^* \end{array}$ | $\begin{array}{l} 123 = 0.57\% \\ 42 = 0.19\% \\ 212 = 0.98\% \end{array}$ | <b>A7</b>                  |

## **Experiment: Most Influential Subset**

#### **MIS (Question Answering)**

- 4 different test points (questions/answer)
- $\alpha = 0.05, .0.1$  (size of subset)

Alpha = 0.05

Arnoldi method was used to approximate influence

Why is there such variety in slopes?

Alpha = 0.01



Downward trend —> similar to influence of 1 datapoint

## **Experiment: Most Influential Subset**



## Outline

- Background: Influential Points
- Statistical Finite Bound
- Computational Bound
  - Discussion: Is there always meaning?
- Most Influential Subset
  - Discussion: Are all statistics a lie?!
- NLP Connection
  - Will there be influence in your future?

## **Related Work in NLP**

## **Influential points**

- Leave one out training (data point importance)
- Saliency maps (token importance)
- Self-influence (Bejan et al., 2023)
- Influence function for NLP.... Still in development

## **Machine Unlearning**

- Quark reinforcement learning (Lu et al., 2022)
- SISA Training (Kumar et al., 2022)

#### Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions

Xiaochuang Han, Byron C. Wallace, Yulia Tsvetkov

#### INFLUENCE FUNCTIONS IN DEEP LEARNING ARE FRAGILE

Samyadeep Basu, Phillip Pope & Soheil Feizi Department of Computer Science University of Maryland, College Park {sbasul2, pepope, sfeizi}@cs.umd.edu Influence Functions Do Not Seem to Predict Usefulness in NLP Transfer Learning

AUG 27 2020

Author(s): Vid Kocijan and Samuel R. Bowman Publication date: August 27 2020 Reviewer: Alex Wang Editor: Kyunghyun Cho

## **Conclusion and Future Extensions**

**Conclusion** 

- Presented statistical and computational guarantees for influence functions for generalized linear models
- •Established the statistical consistency of most influential subsets method (Broderick et at., 2020) together with non-asymptotic bounds
- •Illustrated our results on simulated and real datasets

## **Future Extension**

- Non-convex/Non-smooth penalized M-estimation
- Application for toxicity/bias removal in NLP

# Thank You!

**Full Paper** 





# References

R. Cook and S. Weisberg. Residuals and influence in regression.New York: Chapman and Hall, New York: Chapman Hall, 1982.

T. Broderick, R. Giordano, and R. Meager. An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference? arXiv Preprint, 2020

D. M. Ostrovskii and F. Bach. Finite-sample analysis of M-estimators using self-concordance. Electronic Journal of Statistics, 15(1), 2021



## **Appendix Slides**

UNIVERSITY of WASHINGTON



### Algorithms: Conjugate Gradient

Algorithm 1 Conjugate Gradient Method to Compute the Influence Function

Input: vector v, batch Hessian vector product oracle  $HVP_n(u) = H_n(\theta_n)u$ , number of iterations T 1:  $u_0 = 0, r_0 = -v - HVP_n(u_0), d_0 = r_0$ 2: for t = 0, ..., T - 1 do 3:  $\alpha_t = \frac{d_t^\top r_t}{d_t^\top HVP_n(d_t)}$ 4:  $u_{t+1} = u_t + \alpha_t d_t$ 5:  $r_{t+1} = -v - HVP_n(u_{t+1})$ 6:  $\beta_t = \frac{r_{t+1}^\top r_{t+1}}{r_t^\top r_t}$ 7:  $d_{t+1} = r_{t+1} + \beta_t d_t$ 8: return  $u_T$ 

#### **Algorithms: Stochastic Gradient Descent**

Algorithm 2 Stochastic Gradient Descent Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle  $HVP(i, u) = \nabla^2 \ell(z_i, \theta_n) u$ , number of iterations T, learning rate  $\gamma$ 1:  $u_0 = 0$ 2: for t = 0, ..., T - 1 do 3: Sample  $i_t \sim Unif([n])$ 4:  $u_{t+1} = u_t - \gamma(HVP(i_t, u_t) + v)$ 5: return  $u_T$ 

UNIVERSITY of WASHINGTON

#### **Algorithms: Stochastic Variance Reduction Gradient**

Algorithm 4 Stochastic Variance Reduced Gradient Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle HVP $(i, u) = \nabla^2 \ell(z_i, \theta_n) u$ , number of epochs S, number of iterations per epoch T, learning rate  $\gamma$ 1:  $u_T^{(0)} = 0$ 2: for s = 1, 2, ..., S do 3:  $u_0^{(s)} = u_T^{(s-1)}$ 4:  $\tilde{u}_0^{(s)} = \frac{1}{n} \sum_{i=1}^n \text{HVP}(u_0^{(s)}) - v$ 5: for t = 0, ..., T - 1 do 6: Sample  $i_t \sim \text{Unif}([n])$ 7:  $u_{t+1}^{(s)} = u_t^{(s)} - \gamma(\text{HVP}(i_t, u_t^{(s)}) - \text{HVP}(i_t, u_0^{(s)}) + \tilde{u}_0^{(s)})$ 8: return  $u_T^{(S)}$ 

## Algorithms: Arnoldi

Algorithm 5 Arnoldi Method to Compute the Influence Function (Schioppa et al., 2022)

**Input:** vector v, test function h, initial guess  $u_0$ , batch Hessian vector product oracle HVP<sub>n</sub> $(u) = H_n(\theta_n)u$ , number of top eigenvalues k, number of iterations T**Output:** An estimate of  $\langle \nabla h(\theta), H_n(\theta_n)^{-1}v \rangle$ 1: Obtain  $\Lambda, G = \text{ARNOLDI}(u_0, T, k)$  $\triangleright$  Cache the results for future calls 2: return  $\langle G \nabla h(\theta), \Lambda^{-1} G v \rangle$ 3: procedure ARNOLDI $(u_0, T, k)$  $w_0 = 1 = u_0 / \|u_0\|_2$ 4:  $A = \mathbf{0}_{T+1 \times T}$ 5: for t = 1, ..., T do 6: Set  $u_t = \text{HVP}_n(w_t) - \sum_{j=1}^t \langle u_t, w_j \rangle w_j$ 7: Set  $A_{i,t} = \langle u_t, w_i \rangle$  for j = 1, ..., t and  $A_{t+1,t} = ||u_t||_2$ 8: Update  $w_{t+1} = u_t / ||u_t||$ 9: Set  $\tilde{A} = A[1:T, :] \in \mathbb{R}^{T \times T}$  (discard the last row) 10: Compute an eigenvalue decomposition  $\tilde{A} = \sum_{j=1}^{T} \lambda_j e_j e_j^{\top}$  with  $\lambda_j$ 's in descending order 11: Define  $G: \mathbb{R}^p \to \mathbb{R}^k$  as the operator  $Gu = (\langle u, W^\top e_1 \rangle, \cdots, \langle u, W^\top e_k \rangle)$ , where  $W = (w_1^\top; \cdots; w_T^\top) \in \mathbb{R}^{T \times p}$ 12: **return** diagonal matrix  $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_k)$  and the operator G 13:

#### UNIVERSITY of WASHINGTON

## **Computational Results: CG**

Proposition 1. Consider the setting of Theorem 1, and let **3** denote the event under which its

conclusions hold. Let  $\hat{I}_n(\theta)$  be an estimate of  $I_n(\theta)$  that satisfies  $\mathbb{E}\left[\left\|\hat{I}_n(z) - I_n(z)\right\|_{H_n(\theta_n)}^2\right] Z_{1:n}\right] \leq \epsilon$ .

Then

$$\mathbb{E}\left[\left\|\hat{I}_{n}(z)-I_{n}(z)\right\|_{H_{\star}}^{2}\right] \leq 8\epsilon + C\frac{R^{2}p_{\star}^{2}}{\mu_{\star}n}\log^{3}\left(\frac{p}{\delta}\right)$$

Example: Conjugate Gradient

- Requires  $T_n(\epsilon) \coloneqq \sqrt{k_n} \log(\left\|I_n(z)\right\|_{H_n(\theta_n)}^2 / \epsilon)$  iterations to return an  $\epsilon$  -approximate minimizer.
- Each iteration requires *n* Hessian-vector products

To make statistical error to be smaller than  $\epsilon$ ,  $n \ge n(\epsilon) = \tilde{O}\left(\frac{R^2 p_{\star}^2}{\mu_{\star} \epsilon}\right)$ Total error under  $O(\epsilon)$  is  $O(n(\epsilon)T(\epsilon))$  – by Proposition 1

## **Experiment: Most Influential Subset**

### **MIS Test Questions**

- 1. What position did Víctor Vázquez Solsona play? midfielder
- 2. The nationality of Jean-Louis Laya was what? French
- 3. Where is Venera 9 found? Venus
- 4. Who set the standards for ISO 3166-1 alpha-2? International Organization for Standardization
- *5.* In which language Nintendo La Rivista Ufficiale monthly football magazine reporting?  *Italian*



## **Experiment: Most Influential Subset**

- 1. What position did Víctor Vázquez Solsona play? Midfielder
- 2. Was Goldmoon male or female? Female
- 3. Where is Venera 9 found? Venus
- 4. In which language Nintendo La Rivista Ufficiale monthly football magazine reporting? Italian

